Suppr超能文献

自主神经觉醒检测和心肺睡眠分期可提高家庭睡眠呼吸暂停测试的准确性。

Autonomic arousal detection and cardio-respiratory sleep staging improve the accuracy of home sleep apnea tests.

作者信息

Ross Marco, Fonseca Pedro, Overeem Sebastiaan, Vasko Ray, Cerny Andreas, Shaw Edmund, Anderer Peter

机构信息

Philips Sleep and Respiratory Care, Vienna, Austria.

Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.

出版信息

Front Physiol. 2023 Aug 24;14:1254679. doi: 10.3389/fphys.2023.1254679. eCollection 2023.

Abstract

The apnea-hypopnea index (AHI), defined as the number of apneas and hypopneas per hour of sleep, is still used as an important index to assess sleep disordered breathing (SDB) severity, where hypopneas are confirmed by the presence of an oxygen desaturation or an arousal. Ambulatory polygraphy without neurological signals, often referred to as home sleep apnea testing (HSAT), can potentially underestimate the severity of sleep disordered breathing (SDB) as sleep and arousals are not assessed. We aim to improve the diagnostic accuracy of HSATs by extracting surrogate sleep and arousal information derived from autonomic nervous system activity with artificial intelligence. We used polysomnographic (PSG) recordings from 245 subjects (148 with simultaneously recorded HSATs) to develop and validate a new algorithm to detect autonomic arousals using artificial intelligence. A clinically validated auto-scoring algorithm (Somnolyzer) scored respiratory events, cortical arousals, and sleep stages in PSGs, and provided respiratory events and sleep stages from cardio-respiratory signals in HSATs. In a four-fold cross validation of the newly developed algorithm, we evaluated the accuracy of the estimated arousal index and HSAT-derived surrogates for the AHI. The agreement between the autonomic and cortical arousal index was moderate to good with an intraclass correlation coefficient of 0.73. When using thresholds of 5, 15, and 30 to categorize SDB into none, mild, moderate, and severe, the addition of sleep and arousal information significantly improved the classification accuracy from 70.2% (Cohen's = 0.58) to 80.4% ( = 0.72), with a significant reduction of patients where the severity category was underestimated from 18.8% to 7.3%. Extracting sleep and arousal information from autonomic nervous system activity can improve the diagnostic accuracy of HSATs by significantly reducing the probability of underestimating SDB severity without compromising specificity.

摘要

呼吸暂停低通气指数(AHI)定义为每小时睡眠中的呼吸暂停和低通气次数,仍然是评估睡眠呼吸紊乱(SDB)严重程度的重要指标,其中低通气通过氧饱和度下降或觉醒的出现来确认。无神经信号的动态多导睡眠监测,通常称为家庭睡眠呼吸暂停检测(HSAT),由于未评估睡眠和觉醒情况,可能会低估睡眠呼吸紊乱(SDB)的严重程度。我们旨在通过利用人工智能提取源自自主神经系统活动的替代睡眠和觉醒信息,提高HSAT的诊断准确性。我们使用了245名受试者的多导睡眠图(PSG)记录(其中148名同时记录了HSAT)来开发和验证一种使用人工智能检测自主觉醒的新算法。一种经过临床验证的自动评分算法(Somnolyzer)对PSG中的呼吸事件、皮层觉醒和睡眠阶段进行评分,并从HSAT中的心肺信号提供呼吸事件和睡眠阶段。在新开发算法的四重交叉验证中,我们评估了估计觉醒指数和HSAT衍生的AHI替代指标的准确性。自主觉醒指数与皮层觉醒指数之间的一致性为中度至良好,组内相关系数为0.73。当使用5、15和30的阈值将SDB分为无、轻度、中度和重度时,添加睡眠和觉醒信息显著提高了分类准确性,从70.2%(科恩kappa系数=0.58)提高到80.4%(=0.72),严重程度类别被低估的患者比例从18.8%显著降低到7.3%。从自主神经系统活动中提取睡眠和觉醒信息可以通过显著降低低估SDB严重程度的概率而不影响特异性,从而提高HSAT的诊断准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60c3/10484584/9cc17d1e8112/fphys-14-1254679-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验