Suppr超能文献

基于电子健康记录的机器学习模型在预测巴雷特食管和食管腺癌风险中的开发。

Development of Electronic Health Record-Based Machine Learning Models to Predict Barrett's Esophagus and Esophageal Adenocarcinoma Risk.

机构信息

Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA.

Center for Digital Health, Mayo Clinic, Rochester, Minnesota, USA.

出版信息

Clin Transl Gastroenterol. 2023 Oct 1;14(10):e00637. doi: 10.14309/ctg.0000000000000637.

Abstract

INTRODUCTION

Screening for Barrett's esophagus (BE) is suggested in those with risk factors, but remains underutilized. BE/esophageal adenocarcinoma (EAC) risk prediction tools integrating multiple risk factors have been described. However, accuracy remains modest (area under the receiver-operating curve [AUROC] ≤0.7), and clinical implementation has been challenging. We aimed to develop machine learning (ML) BE/EAC risk prediction models from an electronic health record (EHR) database.

METHODS

The Clinical Data Analytics Platform, a deidentified EHR database of 6 million Mayo Clinic patients, was used to predict BE and EAC risk. BE and EAC cases and controls were identified using International Classification of Diseases codes and augmented curation (natural language processing) techniques applied to clinical, endoscopy, laboratory, and pathology notes. Cases were propensity score matched to 5 independent randomly selected control groups. An ensemble transformer-based ML model architecture was used to develop predictive models.

RESULTS

We identified 8,476 BE cases, 1,539 EAC cases, and 252,276 controls. The BE ML transformer model had an overall sensitivity, specificity, and AUROC of 76%, 76%, and 0.84, respectively. The EAC ML transformer model had an overall sensitivity, specificity, and AUROC of 84%, 70%, and 0.84, respectively. Predictors of BE and EAC included conventional risk factors and additional novel factors, such as coronary artery disease, serum triglycerides, and electrolytes.

DISCUSSION

ML models developed on an EHR database can predict incident BE and EAC risk with improved accuracy compared with conventional risk factor-based risk scores. Such a model may enable effective implementation of a minimally invasive screening technology.

摘要

简介

建议对有风险因素的人群进行 Barrett 食管(BE)筛查,但目前筛查利用率较低。已经描述了一些整合多种风险因素的 BE/食管腺癌(EAC)风险预测工具。然而,准确性仍然不高(受试者工作特征曲线下面积 [AUROC]≤0.7),临床实施具有挑战性。我们旨在从电子健康记录(EHR)数据库中开发机器学习(ML)BE/EAC 风险预测模型。

方法

使用 Clinical Data Analytics Platform(一个包含 600 万 Mayo 诊所患者的去标识 EHR 数据库)来预测 BE 和 EAC 风险。使用国际疾病分类代码和应用于临床、内镜、实验室和病理记录的自然语言处理技术来识别 BE 和 EAC 病例和对照。使用倾向评分将病例与 5 个独立随机选择的对照组匹配。使用基于集成转换器的 ML 模型架构来开发预测模型。

结果

我们确定了 8476 例 BE 病例、1539 例 EAC 病例和 252276 例对照。BE 的 ML 转换器模型的整体敏感性、特异性和 AUROC 分别为 76%、76%和 0.84。EAC 的 ML 转换器模型的整体敏感性、特异性和 AUROC 分别为 84%、70%和 0.84。BE 和 EAC 的预测因子包括传统的风险因素和其他新的因素,如冠状动脉疾病、血清甘油三酯和电解质。

讨论

基于 EHR 数据库开发的 ML 模型可以预测 BE 和 EAC 风险,与基于传统风险因素的风险评分相比,准确性有所提高。这样的模型可能会使微创筛查技术得到有效实施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c78/10584285/aae0691ecedd/ct9-14-e00637-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验