Suppr超能文献

脑肿瘤图像分析研究综述。

A survey on brain tumor image analysis.

机构信息

Department of Computer Science, University of Calgary, Alberta, Canada.

International School of Medicine, Istanbul Medipol University, Istanbul, Turkey.

出版信息

Med Biol Eng Comput. 2024 Jan;62(1):1-45. doi: 10.1007/s11517-023-02873-4. Epub 2023 Sep 13.

Abstract

Medical imaging, also known as radiology, is the field of medicine in which medical professionals recreate various images of parts of the body for diagnostic or treatment purposes. Medical imaging procedures include non-invasive tests that allow doctors to diagnose injuries and diseases without being intrusive TechTarget (n.d.). A number of tools and techniques are used to automate the analysis of medical images acquired with various image processing methods. The brain is one of the largest and most complex organs of the human body and anomaly detection from brain images (i.e., MRI, CT, PET, etc.) is one of the major research areas of medical image analysis. Image processing methods such as filtering and thresholding models, geometry models, graph models, region-based analysis, connected component analysis, machine learning (ML) models, the recent deep learning (DL) models, and various hybrid models are used in brain image analysis. Brain tumors are one of the most common brain diseases with a high mortality rate, and it is difficult to analyze from brain images for the versatility of the shape, location, size, texture, and other characteristics. In this paper, a comprehensive review on brain tumor image analysis is presented with basic ideas of brain tumor, brain imaging, brain image analysis tasks, brain image analysis models, brain tumor image features, performance metrics used for evaluating the models, and some available datasets on brain tumor/medical images. Some challenges of brain tumor analysis are also discussed including suggestions for future research directions. The graphical abstract summarizes the contributions of this paper.

摘要

医学成像,也称为放射学,是医学领域的一个分支,医学专业人员利用该领域的技术为诊断或治疗目的重建身体部位的各种图像。医学成像程序包括非侵入性测试,使医生能够在不进行侵入性操作的情况下诊断损伤和疾病。许多工具和技术被用于自动化分析各种图像处理方法获得的医学图像。大脑是人体最大和最复杂的器官之一,从脑图像(即 MRI、CT、PET 等)中检测异常是医学图像分析的主要研究领域之一。图像处理方法,如滤波和阈值模型、几何模型、图模型、基于区域的分析、连通分量分析、机器学习 (ML) 模型、最近的深度学习 (DL) 模型以及各种混合模型,被用于脑图像分析。脑肿瘤是最常见的脑疾病之一,死亡率很高,由于其形状、位置、大小、纹理和其他特征的多样性,从脑图像中进行分析具有挑战性。本文对脑肿瘤图像分析进行了全面综述,介绍了脑肿瘤的基本概念、脑成像、脑图像分析任务、脑图像分析模型、脑肿瘤图像特征、用于评估模型的性能指标以及一些关于脑肿瘤/医学图像的可用数据集。还讨论了脑肿瘤分析的一些挑战,包括对未来研究方向的建议。图形摘要总结了本文的贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验