Suppr超能文献

Lhs1 依赖性 ERAD 由跨膜结构域的上下文决定。

Lhs1 dependent ERAD is determined by transmembrane domain context.

机构信息

Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A.

Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A.

出版信息

Biochem J. 2023 Sep 27;480(18):1459-1473. doi: 10.1042/BCJ20230075.

Abstract

Transmembrane proteins have unique requirements to fold and integrate into the endoplasmic reticulum (ER) membrane. Most notably, transmembrane proteins must fold in three separate environments: extracellular domains fold in the oxidizing environment of the ER lumen, transmembrane domains (TMDs) fold within the lipid bilayer, and cytosolic domains fold in the reducing environment of the cytosol. Moreover, each region is acted upon by a unique set of chaperones and monitored by components of the ER associated quality control machinery that identify misfolded domains in each compartment. One factor is the ER lumenal Hsp70-like chaperone, Lhs1. Our previous work established that Lhs1 is required for the degradation of the unassembled α-subunit of the epithelial sodium channel (αENaC), but not the homologous β- and γENaC subunits. However, assembly of the ENaC heterotrimer blocked the Lhs1-dependent ER associated degradation (ERAD) of the α-subunit, yet the characteristics that dictate the specificity of Lhs1-dependent ERAD substrates remained unclear. We now report that Lhs1-dependent substrates share a unique set of features. First, all Lhs1 substrates appear to be unglycosylated, and second they contain two TMDs. Each substrate also contains orphaned or unassembled TMDs. Additionally, interfering with inter-subunit assembly of the ENaC trimer results in Lhs1-dependent degradation of the entire complex. Finally, our work suggests that Lhs1 is required for a subset of ERAD substrates that also require the Hrd1 ubiquitin ligase. Together, these data provide hints as to the identities of as-yet unconfirmed substrates of Lhs1 and potentially of the Lhs1 homolog in mammals, GRP170.

摘要

跨膜蛋白具有将其折叠并整合到内质网 (ER) 膜中的独特要求。最值得注意的是,跨膜蛋白必须在三个独立的环境中折叠:细胞外结构域在 ER 腔的氧化环境中折叠,跨膜结构域 (TMD) 在脂质双层内折叠,细胞溶质结构域在细胞质的还原环境中折叠。此外,每个区域都受到一组独特的伴侣蛋白的作用,并受到 ER 相关质量控制机制组件的监测,这些组件可识别每个隔室中错误折叠的结构域。一个因素是内质网腔热休克蛋白 70 样伴侣蛋白 Lhs1。我们之前的工作表明,Lhs1 是降解上皮钠通道 (ENaC) 未组装的 α 亚基所必需的,但不是同源的 β 和 γ ENaC 亚基。然而,ENaC 异三聚体的组装阻止了 Lhs1 依赖的内质网相关降解 (ERAD) 的 α 亚基,但决定 Lhs1 依赖的 ERAD 底物特异性的特征仍不清楚。我们现在报告说,Lhs1 依赖的底物具有一组独特的特征。首先,所有 Lhs1 底物似乎都没有糖基化,其次它们含有两个 TMD。每个底物还含有孤立或未组装的 TMD。此外,干扰 ENaC 三聚体的亚基间组装会导致 Lhs1 依赖的整个复合物降解。最后,我们的工作表明,Lhs1 是一组 ERAD 底物所必需的,这些底物也需要 Hrd1 泛素连接酶。总的来说,这些数据为 Lhs1 的未确认底物和潜在的哺乳动物 Lhs1 同源物 GRP170 的身份提供了线索。

相似文献

1
Lhs1 dependent ERAD is determined by transmembrane domain context.
Biochem J. 2023 Sep 27;480(18):1459-1473. doi: 10.1042/BCJ20230075.
3
The Lhs1/GRP170 chaperones facilitate the endoplasmic reticulum-associated degradation of the epithelial sodium channel.
J Biol Chem. 2013 Jun 21;288(25):18366-80. doi: 10.1074/jbc.M113.469882. Epub 2013 May 3.
6
Endoplasmic Reticulum-Associated Protein Degradation.
Cold Spring Harb Perspect Biol. 2022 Dec 1;14(12):a041247. doi: 10.1101/cshperspect.a041247.
7
Role of HERP and a HERP-related protein in HRD1-dependent protein degradation at the endoplasmic reticulum.
J Biol Chem. 2014 Feb 14;289(7):4444-54. doi: 10.1074/jbc.M113.519561. Epub 2013 Dec 23.
10
SEL1L-dependent Substrates Require Derlin2/3 and Herp1/2 for Endoplasmic Reticulum-associated Degradation.
Cell Struct Funct. 2017 Jul 4;42(2):81-94. doi: 10.1247/csf.17007. Epub 2017 May 26.

引用本文的文献

1
Dosage suppressors of gpn2ts mutants and functional insights into the role of Gpn2 in budding yeast.
PLoS One. 2024 Dec 6;19(12):e0313597. doi: 10.1371/journal.pone.0313597. eCollection 2024.
2
Excess dietary sodium restores electrolyte and water homeostasis caused by loss of the endoplasmic reticulum molecular chaperone, GRP170, in the mouse nephron.
Am J Physiol Renal Physiol. 2025 Feb 1;328(2):F173-F189. doi: 10.1152/ajprenal.00192.2024. Epub 2024 Nov 18.
3
Loss of Grp170 results in catastrophic disruption of endoplasmic reticulum function.
Mol Biol Cell. 2024 Apr 1;35(4):ar59. doi: 10.1091/mbc.E24-01-0012. Epub 2024 Mar 6.
4
The Essential Functions of Molecular Chaperones and Folding Enzymes in Maintaining Endoplasmic Reticulum Homeostasis.
J Mol Biol. 2024 Jul 15;436(14):168418. doi: 10.1016/j.jmb.2023.168418. Epub 2023 Dec 22.

本文引用的文献

1
TMUB1 is an endoplasmic reticulum-resident escortase that promotes the p97-mediated extraction of membrane proteins for degradation.
Mol Cell. 2022 Sep 15;82(18):3453-3467.e14. doi: 10.1016/j.molcel.2022.07.006. Epub 2022 Aug 11.
2
The molecular chaperone GRP170 protects against ER stress and acute kidney injury in mice.
JCI Insight. 2022 Mar 8;7(5):e151869. doi: 10.1172/jci.insight.151869.
4
Epithelial Sodium Channel and Salt-Sensitive Hypertension.
Hypertension. 2021 Mar 3;77(3):759-767. doi: 10.1161/HYPERTENSIONAHA.120.14481. Epub 2021 Jan 25.
5
Structural and Mechanistic Principles of ABC Transporters.
Annu Rev Biochem. 2020 Jun 20;89:605-636. doi: 10.1146/annurev-biochem-011520-105201.
6
Hrd1 forms the retrotranslocation pore regulated by auto-ubiquitination and binding of misfolded proteins.
Nat Cell Biol. 2020 Mar;22(3):274-281. doi: 10.1038/s41556-020-0473-4. Epub 2020 Feb 24.
8
Protein quality control in the secretory pathway.
J Cell Biol. 2019 Oct 7;218(10):3171-3187. doi: 10.1083/jcb.201906047. Epub 2019 Sep 19.
9
Harmonizing Experimental Data with Modeling to Predict Membrane Protein Insertion in Yeast.
Biophys J. 2019 Aug 20;117(4):668-678. doi: 10.1016/j.bpj.2019.07.013. Epub 2019 Jul 16.
10
Ubiquitin-dependent protein degradation at the endoplasmic reticulum and nuclear envelope.
Semin Cell Dev Biol. 2019 Sep;93:111-124. doi: 10.1016/j.semcdb.2018.09.013. Epub 2018 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验