Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Da'an Dist., Taipei, 10607, Taiwan.
Institute of Polymer Science and Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan.
Macromol Rapid Commun. 2023 Dec;44(24):e2300382. doi: 10.1002/marc.202300382. Epub 2023 Oct 2.
Organic-inorganic hybrid perovskites have garnered significant attention in optoelectronics owing to their outstanding tunable optical characteristics. Controlled growth of perovskite nanocrystals from solutions is key for controlling the emission intensity and photoluminescence lifetime of perovskites. In particular, most studies have focused on controlling the crystallization of perovskite through chemical treatment using chelating ligands or physical treatment via antisolvent diffusion, and there exists a trade-off between the photoluminescence intensity and lifetime of perovskites. Herein, a selective solvent vapor-assisted crystallization with the aid of a functional polymer, which nanoscale perovskite crystals are grown andante from precursor solution, is presented for tuning the crystallization and optical properties of a common halide perovskite, methylammonium lead bromide (MAPbBr ). The proposed method here produces perovskite nanocrystals in the range of 200-300 nm. The spin-coated thin film formed from the perovskite solution exhibits strong green photoluminescence with a long lifetime. The effects of the functional group and polymer dosage on the crystallization of MAPbBr are systematically investigated, and the crystallization mechanism is explained based on a modified LaMer model. This study provides an advanced solution process for precisely controlling perovskite crystallization to enhance their optical properties for next-generation optoelectronic devices.
有机-无机杂化钙钛矿由于其出色的可调谐光学特性,在光电子学中引起了极大的关注。控制钙钛矿纳米晶体从溶液中生长是控制钙钛矿发射强度和光致发光寿命的关键。特别是,大多数研究都集中在通过使用螯合配体的化学处理或通过抗溶剂扩散的物理处理来控制钙钛矿的结晶,并且钙钛矿的光致发光强度和寿命之间存在权衡。在此,提出了一种选择性溶剂蒸气辅助结晶方法,该方法在功能聚合物的辅助下进行,纳米级钙钛矿晶体从前驱体溶液中逐渐生长,用于调节常见卤化物钙钛矿,即甲基碘化铅(MAPbBr )的结晶和光学性质。所提出的方法在此处产生了 200-300nm 范围内的钙钛矿纳米晶体。由钙钛矿溶液形成的旋涂薄膜具有很强的绿色光致发光,寿命长。系统研究了功能基团和聚合物用量对 MAPbBr 结晶的影响,并基于改进的 LaMer 模型解释了结晶机制。这项研究为精确控制钙钛矿结晶提供了一种先进的溶液处理方法,以增强下一代光电设备的光学性能。