Dunlop David, Ludvíková Lucie, Banerjee Ambar, Ottosson Henrik, Slanina Tomáš
Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, Prague 6 160 00, Czech Republic.
Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Prague 2 128 40, Czech Republic.
J Am Chem Soc. 2023 Oct 4;145(39):21569-21575. doi: 10.1021/jacs.3c07625. Epub 2023 Sep 13.
Fluorescence exclusively occurs from the lowest excited state of a given multiplicity according to Kasha's rule. However, this rule is not obeyed by a handful of anti-Kasha fluorophores whose underlying mechanism is still understood merely on a phenomenological basis. This lack of understanding prevents the rational design and property-tuning of anti-Kasha fluorophores. Here, we propose a model explaining the photophysical properties of an archetypal anti-Kasha fluorophore, azulene, based on its ground- and excited-state (anti)aromaticity. We derived our model from a detailed analysis of the electronic structure of the ground singlet, first excited triplet, and quintet states and of the first and second excited singlet states using the perturbational molecular orbital theory and quantum-chemical aromaticity indices. Our model reveals that the anti-Kasha properties of azulene and its derivatives result from (i) the contrasting (anti)aromaticity of its first and second singlet excited states (S and S, respectively) and (ii) an easily accessible antiaromaticity relief pathway of the S state. This explanation of the fundamental cause of anti-Kasha behavior may pave the way for new classes of anti-Kasha fluorophores and materials with long-lived, high-energy excited states.
根据卡沙规则,荧光仅从给定多重性的最低激发态产生。然而,少数反卡沙荧光团并不遵循这一规则,其潜在机制目前仅在现象学基础上得到理解。这种理解上的不足阻碍了反卡沙荧光团的合理设计和性能调控。在此,我们基于其基态和激发态(反)芳香性,提出了一个模型来解释典型反卡沙荧光团 azulene 的光物理性质。我们使用微扰分子轨道理论和量子化学芳香性指数,通过对基态单重态、第一激发三重态和五重态以及第一和第二激发单重态的电子结构进行详细分析,得出了我们的模型。我们的模型表明,azulene 及其衍生物的反卡沙性质源于:(i)其第一和第二单重激发态(分别为 S₁ 和 S₂)的对比(反)芳香性;(ii)S₂ 态易于实现的反芳香性缓解途径。这种对反卡沙行为根本原因的解释可能为具有长寿命、高能激发态的新型反卡沙荧光团和材料铺平道路。