Suppr超能文献

识别肥胖亚型:利用临床生物标志物和基因数据的研究综述

Identifying obesity subtypes: A review of studies utilising clinical biomarkers and genetic data.

作者信息

Abraham Angela, Yaghootkar Hanieh

机构信息

Joseph Banks Laboratories, College of Health and Science, University of Lincoln, Lincoln, Lincolnshire, UK.

出版信息

Diabet Med. 2023 Dec;40(12):e15226. doi: 10.1111/dme.15226. Epub 2023 Sep 21.

Abstract

Obesity is a complex and multifactorial condition that poses significant health risks. Recent advancements in our understanding of obesity have highlighted the heterogeneity within this disorder. Identifying distinct subtypes of obesity is crucial for personalised treatment and intervention strategies. This review paper aims to examine studies that have utilised clinical biomarkers and genetic data to identify clusters or subtypes of obesity. The findings of these studies may provide valuable insights into the underlying mechanisms and potential targeted approaches for managing obesity-related health issues such as type 2 diabetes.

摘要

肥胖是一种复杂的多因素疾病,会带来重大的健康风险。我们对肥胖认识的最新进展凸显了这种疾病的异质性。识别肥胖的不同亚型对于个性化治疗和干预策略至关重要。这篇综述文章旨在研究那些利用临床生物标志物和基因数据来识别肥胖聚类或亚型的研究。这些研究的结果可能为管理与肥胖相关的健康问题(如2型糖尿病)的潜在机制和潜在靶向方法提供有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验