Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna, Austria.
Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
Nature. 2023 Sep;621(7978):373-380. doi: 10.1038/s41586-023-06473-y. Epub 2023 Sep 13.
The development of the human brain involves unique processes (not observed in many other species) that can contribute to neurodevelopmental disorders. Cerebral organoids enable the study of neurodevelopmental disorders in a human context. We have developed the CRISPR-human organoids-single-cell RNA sequencing (CHOOSE) system, which uses verified pairs of guide RNAs, inducible CRISPR-Cas9-based genetic disruption and single-cell transcriptomics for pooled loss-of-function screening in mosaic organoids. Here we show that perturbation of 36 high-risk autism spectrum disorder genes related to transcriptional regulation uncovers their effects on cell fate determination. We find that dorsal intermediate progenitors, ventral progenitors and upper-layer excitatory neurons are among the most vulnerable cell types. We construct a developmental gene regulatory network of cerebral organoids from single-cell transcriptomes and chromatin modalities and identify autism spectrum disorder-associated and perturbation-enriched regulatory modules. Perturbing members of the BRG1/BRM-associated factor (BAF) chromatin remodelling complex leads to enrichment of ventral telencephalon progenitors. Specifically, mutating the BAF subunit ARID1B affects the fate transition of progenitors to oligodendrocyte and interneuron precursor cells, a phenotype that we confirmed in patient-specific induced pluripotent stem cell-derived organoids. Our study paves the way for high-throughput phenotypic characterization of disease susceptibility genes in organoid models with cell state, molecular pathway and gene regulatory network readouts.
人类大脑的发育涉及独特的过程(在许多其他物种中观察不到),这些过程可能导致神经发育障碍。类脑器官使我们能够在人类背景下研究神经发育障碍。我们开发了 CRISPR-人类器官-单细胞 RNA 测序(CHOOSE)系统,该系统使用经过验证的向导 RNA 对、诱导型 CRISPR-Cas9 为基础的遗传干扰以及单细胞转录组学,对镶嵌类脑器官进行基于pool 的功能丧失筛选。在这里,我们展示了 36 个与转录调控相关的高风险自闭症谱系障碍基因的干扰,揭示了它们对细胞命运决定的影响。我们发现背侧中间祖细胞、腹侧祖细胞和上皮层兴奋性神经元是最脆弱的细胞类型之一。我们从单细胞转录组和染色质模式构建了类脑器官的发育基因调控网络,并鉴定了自闭症谱系障碍相关和干扰富集的调控模块。干扰 BRG1/BRM 相关因子(BAF)染色质重塑复合物的成员会导致脑室前脑祖细胞富集。具体来说,突变 BAF 亚基 ARID1B 会影响祖细胞向少突胶质细胞和中间神经元前体细胞的命运转变,我们在患者特异性诱导多能干细胞衍生的类器官中证实了这一表型。我们的研究为在类器官模型中进行高通量表型特征分析奠定了基础,这些模型可以提供细胞状态、分子途径和基因调控网络的读出结果,以研究疾病易感性基因。