Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, 21205, USA.
Department of Physics and Astronomy, Johns Hopkins University, Baltimore, 21218, USA.
BMC Bioinformatics. 2023 Sep 13;24(1):340. doi: 10.1186/s12859-023-05461-3.
Bisulfite sequencing is a powerful tool for profiling genomic methylation, an epigenetic modification critical in the understanding of cancer, psychiatric disorders, and many other conditions. Raw data generated by whole genome bisulfite sequencing (WGBS) requires several computational steps before it is ready for statistical analysis, and particular care is required to process data in a timely and memory-efficient manner. Alignment to a reference genome is one of the most computationally demanding steps in a WGBS workflow, taking several hours or even days with commonly used WGBS-specific alignment software. This naturally motivates the creation of computational workflows that can utilize GPU-based alignment software to greatly speed up the bottleneck step. In addition, WGBS produces raw data that is large and often unwieldy; a lack of memory-efficient representation of data by existing pipelines renders WGBS impractical or impossible to many researchers.
We present BiocMAP, a Bioconductor-friendly methylation analysis pipeline consisting of two modules, to address the above concerns. The first module performs computationally-intensive read alignment using Arioc, a GPU-accelerated short-read aligner. Since GPUs are not always available on the same computing environments where traditional CPU-based analyses are convenient, the second module may be run in a GPU-free environment. This module extracts and merges DNA methylation proportions-the fractions of methylated cytosines across all cells in a sample at a given genomic site. Bioconductor-based output objects in R utilize an on-disk data representation to drastically reduce required main memory and make WGBS projects computationally feasible to more researchers.
BiocMAP is implemented using Nextflow and available at http://research.libd.org/BiocMAP/ . To enable reproducible analysis across a variety of typical computing environments, BiocMAP can be containerized with Docker or Singularity, and executed locally or with the SLURM or SGE scheduling engines. By providing Bioconductor objects, BiocMAP's output can be integrated with powerful analytical open source software for analyzing methylation data.
亚硫酸氢盐测序是一种强大的工具,可用于分析基因组甲基化,这是一种在理解癌症、精神疾病和许多其他疾病中至关重要的表观遗传修饰。全基因组亚硫酸氢盐测序(WGBS)生成的原始数据在进行统计分析之前需要经过几个计算步骤,并且特别需要注意以及时和节省内存的方式处理数据。与参考基因组对齐是 WGBS 工作流程中最计算密集的步骤之一,通常使用特定于 WGBS 的对齐软件需要几个小时甚至几天的时间。这自然促使创建可以利用基于 GPU 的对齐软件来大大加快瓶颈步骤的计算工作流程。此外,WGBS 生成的原始数据很大且通常难以处理;现有管道对数据缺乏节省内存的表示形式,使得许多研究人员无法实际或不可能使用 WGBS。
我们提出了 BiocMAP,这是一个由两个模块组成的 Bioconductor 友好的甲基化分析管道,用于解决上述问题。第一个模块使用 Arioc 执行计算密集型的读对齐,Arioc 是一种 GPU 加速的短读对齐器。由于 GPU 并不总是在传统的基于 CPU 的分析方便的同一计算环境中可用,因此第二个模块可以在没有 GPU 的环境中运行。该模块提取并合并 DNA 甲基化比例-给定基因组位置上样本中所有细胞的甲基化胞嘧啶分数。基于 Bioconductor 的 R 中的输出对象使用磁盘上的数据表示形式,可大大减少所需的主内存,并使更多的研究人员能够进行 WGBS 项目的计算。
BiocMAP 是使用 Nextflow 实现的,并可在 http://research.libd.org/BiocMAP/ 获得。为了在各种典型计算环境中实现可重复的分析,BiocMAP 可以使用 Docker 或 Singularity 进行容器化,并在本地或使用 SLURM 或 SGE 调度引擎执行。通过提供 Bioconductor 对象,BiocMAP 的输出可以与用于分析甲基化数据的强大的开源分析软件集成。