Choi Hangnyoung, Kim Jae Han, Kim Hwiyoung, Cheon Keun-Ah
Department of Child and Adolescent Psychiatry, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Republic of Korea.
Front Neurosci. 2023 Aug 29;17:1229155. doi: 10.3389/fnins.2023.1229155. eCollection 2023.
Previous studies have investigated predictive factors for parenting stress in caregivers of autism spectrum disorder (ASD) patients using traditional statistical approaches, but their study settings and results were inconsistent. Herein, this study aimed to identify major predictors for parenting stress in this population by developing explainable machine learning models.
Study participants were collected from the Department of Child and Adolescent Psychiatry, Severance Hospital, Yonsei University College of Medicine, Seoul, the Republic of Korea between March 2016 and October 2020. A total of 36 model features were used, which include subscales of the Minnesota Multiphasic Personality Inventory-2 (MMPI-2) for caregivers' psychopathology, Social Responsiveness Scale-2 for core symptoms, and Child Behavior Checklist (CBCL) for behavioral problems. Machine learning classifiers [eXtreme Gradient Boosting (XGBoost), random forest (RF), logistic regression, and support vector machine (SVM) classifier] were generated to predict severe total parenting stress and its subscales (parental distress, parent-child dysfunctional interaction, and difficult child). Model performance was assessed by area under the receiver operating curve (AUC), sensitivity, specificity, accuracy, positive predictive value, and negative predictive value. We utilized the SHapley Additive exPlanations tree explainer to investigate major predictors.
A total of 496 participants were included [mean age of ASD patients 6.39 (SD 2.24); 413 men (83.3%)]. The best-performing models achieved an AUC of 0.831 (RF model; 95% CI 0.740-0.910) for parental distress, 0.814 (SVM model; 95% CI 0.720-0.896) for parent-child dysfunctional interaction, 0.813 (RF model; 95% CI 0.724-0.891) for difficult child, and 0.862 (RF model; 95% CI 0.783-0.930) for total parenting stress on the test set. For the total parenting stress, ASD patients' aggressive behavior and anxious/depressed, and caregivers' depression, social introversion, and psychasthenia were the top 5 leading predictors.
By using explainable machine learning models (XGBoost and RF), we investigated major predictors for each subscale of the parenting stress index in caregivers of ASD patients. Identified predictors for parenting stress in this population might help alert clinicians whether a caregiver is at a high risk of experiencing severe parenting stress and if so, providing timely interventions, which could eventually improve the treatment outcome for ASD patients.
以往的研究使用传统统计方法调查了自闭症谱系障碍(ASD)患者照料者育儿压力的预测因素,但其研究背景和结果并不一致。在此,本研究旨在通过开发可解释的机器学习模型来确定该人群育儿压力的主要预测因素。
研究参与者于2016年3月至2020年10月期间从韩国首尔延世大学医学院Severance医院儿童与青少年精神科收集。共使用了36个模型特征,包括用于评估照料者精神病理学的明尼苏达多相人格调查表第二版(MMPI-2)分量表、用于评估核心症状的社会反应量表第二版以及用于评估行为问题的儿童行为清单(CBCL)。生成机器学习分类器[极端梯度提升(XGBoost)、随机森林(RF)、逻辑回归和支持向量机(SVM)分类器]以预测严重的总体育儿压力及其分量表(父母苦恼、亲子功能失调互动和难养型儿童)。通过受试者工作特征曲线下面积(AUC)、敏感性、特异性、准确性、阳性预测值和阴性预测值评估模型性能。我们利用SHapley加性解释树解释器来研究主要预测因素。
共纳入496名参与者[ASD患者的平均年龄为6.39岁(标准差2.24);413名男性(83.3%)]。在测试集上,表现最佳的模型在父母苦恼方面的AUC为0.831(RF模型;95%置信区间0.740 - 0.910),在亲子功能失调互动方面的AUC为0.814(SVM模型;95%置信区间0.720 - 0.896),在难养型儿童方面的AUC为0.813(RF模型;95%置信区间0.724 - 0.891),在总体育儿压力方面的AUC为0.862(RF模型;95%置信区间0.783 - 0.930)。对于总体育儿压力,ASD患者的攻击行为、焦虑/抑郁,以及照料者的抑郁、社交内向和神经衰弱是前5大主要预测因素。
通过使用可解释的机器学习模型(XGBoost和RF),我们研究了ASD患者照料者育儿压力指数各分量表的主要预测因素。确定该人群育儿压力的预测因素可能有助于提醒临床医生照料者是否有经历严重育儿压力的高风险,如果是,则及时提供干预措施,最终改善ASD患者的治疗效果。