Suppr超能文献

用于光学表面制造的碳化硅研磨。第二部分。亚表面损伤。

Grinding of silicon carbide for optical surface fabrication. Part II. Subsurface damage.

作者信息

Shanmugam Prithiviraj, Lambropoulos John C, Davies Matthew A

出版信息

Appl Opt. 2023 May 10;62(14):3788-3796. doi: 10.1364/AO.485978.

Abstract

This paper is the second part of a study of the grinding of three different grades of silicon carbide (SiC) under the same conditions. In this paper, subsurface damage is analyzed using magnetorheological finishing (MRF). The MRF ribbon is brought into contact with the surface and allowed to dwell for different lengths of time to produce dimples or spots at different depths. The roughness parameters are evaluated at the base of the spots. As the spot depth increases the roughness parameters decrease, eventually saturating at a steady-state value. The depth at which saturation occurs is much greater than the initial peak-to-value roughness of the surface and is therefore assumed to be correlated to the depth of subsurface damage in the material. Estimates of the damage depth are comparable to other estimates given in the literature. The validity of this technique is assessed across different grades of SiC under different grinding conditions, and limitations are identified. The study shows that the microstructure of the SiC grade is a major factor that affects the validity of the technique. The technique is suitable for SiC grades that have a more homogeneous microstructure such as chemical vapor deposited or chemical vapor composite grades. The presence of porosity as in the direct sintered grade, or the presence of a secondary phase, for example, silicon in the reaction-bonded and silicon-infiltrated grades, could hinder the technique from providing conclusive results.

摘要

本文是在相同条件下对三种不同等级碳化硅(SiC)进行磨削研究的第二部分。在本文中,使用磁流变抛光(MRF)分析亚表面损伤。使MRF带与表面接触并保持不同的时间长度,以在不同深度产生凹坑或斑点。在斑点底部评估粗糙度参数。随着斑点深度增加,粗糙度参数减小,最终在稳态值处达到饱和。发生饱和的深度远大于表面的初始峰谷粗糙度,因此假定与材料中亚表面损伤的深度相关。损伤深度的估计值与文献中给出的其他估计值相当。在不同的磨削条件下,对该技术在不同等级SiC上的有效性进行了评估,并确定了局限性。研究表明,SiC等级的微观结构是影响该技术有效性的主要因素。该技术适用于具有更均匀微观结构的SiC等级,如化学气相沉积或化学气相复合等级。直接烧结等级中存在孔隙,或反应结合和渗硅等级中存在第二相(例如硅),可能会阻碍该技术得出确凿的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验