Suppr超能文献

基于数据驱动的低分辨率 CT 图像松质骨各向异性力学特性的特征描述。

Data-Driven Based Characterization of Anisotropic Mechanical Properties for Cancellous Bone From Low-Resolution CT Images.

出版信息

IEEE Trans Biomed Eng. 2024 Feb;71(2):689-699. doi: 10.1109/TBME.2023.3315846. Epub 2024 Jan 19.

Abstract

OBJECTIVES

Exploring the anisotropic mechanical behavior of cancellous bone is crucial for in-vivo bone biomechanical analysis. However, it is challenging to characterize anisotropic mechanical behaviors under low-resolution (LR) clinical CT images due to a lack of microstructural information. The data-driven method proposed in this article accurately characterizes the anisotropic mechanical properties of cancellous bone from LR clinical CT images.

METHODS

The trabecular bone cubes of sheep are used to obtain a high-resolution (HR) micro-CT and an LR clinical CT image dataset. First, an auto-encoder model is trained using HR image data. Microstructural features are extracted by the encoder. A fast super-resolution (FSR) model is trained to map LR bone cubes to the features extracted from corresponding HR samples. The pretrained FSR model is used to convert LR clinical CT images to encoded microstructural features. The features are later used to predict target histomorphological parameters, anisotropic elastic tensors, and fabric tensors based on a fully connected neural network.

RESULTS

The data-driven model accurately predicts the elastic tensor and fabric tensor of trabecular bones with LR CT images with 0.6 mm/pixel spatial resolution. It was verified that LR clinical CT images could generate microstructural information using a generative deep-learning model and an up-sampling operation.

SIGNIFICANCE

This study proves that clinical medical images of cancellous bone can be used for analysis of complex mechanical properties using a data-driven method, which is useful for real-time bone defect diagnosis and personalized bone prosthesis design in clinical application.

摘要

目的

探索松质骨的各向异性力学行为对于体内骨生物力学分析至关重要。然而,由于缺乏微观结构信息,在低分辨率(LR)临床 CT 图像下,很难描述各向异性力学行为。本文提出的数据驱动方法可以准确地从 LR 临床 CT 图像中描述松质骨的各向异性力学特性。

方法

使用绵羊的小梁骨块获得高分辨率(HR)微 CT 和 LR 临床 CT 图像数据集。首先,使用 HR 图像数据训练自动编码器模型。通过编码器提取微观结构特征。训练快速超分辨率(FSR)模型,将 LR 骨块映射到从相应 HR 样本中提取的特征。使用预训练的 FSR 模型将 LR 临床 CT 图像转换为编码的微观结构特征。然后,基于全连接神经网络,使用这些特征预测目标组织形态学参数、各向异性弹性张量和织物张量。

结果

该数据驱动模型可以准确预测具有 0.6mm/pixel 空间分辨率的 LR CT 图像中小梁骨的弹性张量和织物张量。验证了使用生成式深度学习模型和上采样操作可以从 LR 临床 CT 图像中生成微观结构信息。

意义

本研究证明了使用数据驱动方法可以从临床松质骨医学图像中分析复杂的力学特性,这对于临床应用中的实时骨缺损诊断和个性化骨假体设计非常有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验