Suppr超能文献

瑞因通过抑制 NRF2/SLC7A11/GPX4 通路来减轻脑缺血再灌注损伤。

Rhein attenuates cerebral ischemia-reperfusion injury via inhibition of ferroptosis through NRF2/SLC7A11/GPX4 pathway.

机构信息

Yixing Traditional Chinese Medicine Hospital, No.128, Yangquan East Road, Yixing City, Jiangsu Province, China.

School of Chinese Medicine, Schiool of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.

出版信息

Exp Neurol. 2023 Nov;369:114541. doi: 10.1016/j.expneurol.2023.114541. Epub 2023 Sep 14.

Abstract

BACKGROUND

Ischemic stroke, a major cause of death and disability worldwide, results from reduced blood flow to the brain, leading to irreversible neuronal damage. Recent evidence suggests that ferroptosis, a form of regulated cell death, plays a critical role in the pathogenesis of ischemic stroke. Rhein, a natural anthraquinone compound, has demonstrated neuroprotective effects; However, its role in ferroptosis and the underlying mechanisms remain unclear. Here, we investigated the protective effects of Rhein against ischemia/reperfusion (I/R) injury in a rat model of middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation/reperfusion (OGD/R)-induced HT22 cells. Rhein treatment dose-dependently ameliorated neurological deficits, reduced infarct volume, and attenuated blood-brain barrier (BBB) disruption in the MCAO model. Furthermore, Rhein suppressed oxidative stress, intracellular ROS generation, and ferroptosis-related protein expression in both in vivo and in vitro models. Mechanistically, Rhein protected against OGD/R-induced HT22 cell injury by regulating the NRF2/SLC7A11/GPX4 signaling pathway. This effect was abolished upon NRF2 inhibition, suggesting that Rhein's neuroprotective action is NRF2-dependent. Molecular docking and microscale thermophoresis analyses further supported the direct interaction between Rhein and the ferroptosis-related protein NRF2. Collectively, our findings reveal that Rhein confers neuroprotection against cerebral I/R injury by inhibiting ferroptosis via the NRF2/SLC7A11/GPX4 axis, providing a potential therapeutic avenue for ischemic stroke.

AIMS

To investigate the neuroprotective effects of Rhein, a natural anthraquinone compound, against ischemia/reperfusion (I/R) injury and elucidate the underlying mechanisms involving ferroptosis and the NRF2/SLC7A11/GPX4 pathway.

METHODS

A rat model of middle cerebral artery occlusion (MCAO) was employed for in vivo assessments, while oxygen-glucose deprivation/reperfusion (OGD/R)-induced HT22 cells were used as an in vitro model. Comprehensive analyses, including neurological score assessment, triphenyl tetrazolium chloride staining, Evans Blue leakage assay, intracellular ROS detection, MTT assay, dual-luciferase reporter assay, oxidative stress and Fe content assessment, immunofluorescence, Western blot, flow cytometry, molecular docking, and microscale thermophoresis, were performed to evaluate the effects of Rhein on I/R injury and ferroptosis.

RESULTS

Rhein conferred dose-dependent neuroprotection against cerebral I/R injury, reducing infarct volume and blood-brain barrier (BBB) disruption in the MCAO model. In both in vivo and in vitro models, Rhein suppressed oxidative stress, intracellular ROS generation, and ferroptosis-related protein expression. Furthermore, Rhein protected HT22 cells from OGD/R-induced injury by regulating the NRF2/SLC7A11/GPX4 signaling pathway, with NRF2 inhibition abolishing these therapeutic effects. Molecular docking and microscale thermophoresis analyses supported a direct interaction between Rhein and NRF2, a ferroptosis-related protein.

CONCLUSION

Rhein attenuates cerebral I/R injury by inhibiting ferroptosis via the NRF2/SLC7A11/GPX4 axis, highlighting its potential as a therapeutic agent for ischemic stroke.

摘要

背景

缺血性脑卒中是全球范围内导致死亡和残疾的主要原因,它是由于脑血流减少导致的神经元不可逆转的损伤。最近的证据表明,铁死亡是一种受调控的细胞死亡形式,在缺血性脑卒中的发病机制中起着关键作用。大黄酸是一种天然蒽醌化合物,已表现出神经保护作用;然而,其在铁死亡中的作用及其潜在机制仍不清楚。在这里,我们研究了大黄酸对大脑中动脉闭塞(MCAO)大鼠模型和氧葡萄糖剥夺/再灌注(OGD/R)诱导的 HT22 细胞中铁死亡的保护作用。大黄酸治疗剂量依赖性地改善了神经功能缺损,减少了梗死体积,减轻了 MCAO 模型中的血脑屏障(BBB)破坏。此外,大黄酸在体内和体外模型中均抑制了氧化应激、细胞内 ROS 生成和铁死亡相关蛋白的表达。在机制上,大黄酸通过调节 NRF2/SLC7A11/GPX4 信号通路来保护 OGD/R 诱导的 HT22 细胞损伤。NRF2 抑制消除了这种作用,表明大黄酸的神经保护作用依赖于 NRF2。分子对接和微尺度热泳分析进一步支持了大黄酸与铁死亡相关蛋白 NRF2 之间的直接相互作用。总之,我们的研究结果表明,大黄酸通过抑制铁死亡,通过 NRF2/SLC7A11/GPX4 轴发挥神经保护作用,为缺血性脑卒中提供了一种潜在的治疗途径。

目的

研究天然蒽醌化合物大黄酸对缺血再灌注(I/R)损伤的神经保护作用,并阐明涉及铁死亡和 NRF2/SLC7A11/GPX4 通路的潜在机制。

方法

采用大脑中动脉闭塞(MCAO)大鼠模型进行体内评估,同时使用氧葡萄糖剥夺/再灌注(OGD/R)诱导的 HT22 细胞作为体外模型。通过神经功能评分评估、三苯基四唑氯化物染色、伊文思蓝渗漏测定、细胞内 ROS 检测、MTT 测定、双荧光素酶报告基因测定、氧化应激和铁含量评估、免疫荧光、Western blot、流式细胞术、分子对接和微尺度热泳等综合分析,评价大黄酸对 I/R 损伤和铁死亡的影响。

结果

大黄酸对大脑 I/R 损伤具有剂量依赖性的神经保护作用,减少 MCAO 模型中的梗死体积和血脑屏障(BBB)破坏。在体内和体外模型中,大黄酸均抑制氧化应激、细胞内 ROS 生成和铁死亡相关蛋白的表达。此外,大黄酸通过调节 NRF2/SLC7A11/GPX4 信号通路,保护 HT22 细胞免受 OGD/R 诱导的损伤,NRF2 抑制消除了这些治疗作用。分子对接和微尺度热泳分析支持大黄酸与铁死亡相关蛋白 NRF2 之间的直接相互作用。

结论

大黄酸通过 NRF2/SLC7A11/GPX4 轴抑制铁死亡减轻脑 I/R 损伤,提示其可能成为缺血性脑卒中的治疗药物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验