Sartorius Stedim Biotech
Sartorius Stedim Biotech.
PDA J Pharm Sci Technol. 2024 Feb 20;78(1):90-99. doi: 10.5731/pdajpst.2022.012755.
The manufacturing of a wide range of biopharmaceuticals, from antibodies and vaccines to cell-based therapies, increasingly takes place in single-use processing equipment. Manufactured in clean rooms and sealed and sterilized, single-use systems (SUSs) are ready-to-use and easily scalable. Controls in the "clean-build" manufacturing of SUSs reduce the probability of occurrence of particulate matter in SUSs. However, the size, complexity, and limited transparency of SUSs clearly limit the detectability of particulate matter on the interior (fluid-contacting) surfaces of a SUS during a visual inspection, as demonstrated in a recent study. In applications downstream of final filters or in aseptic processing, particulate matter on the surfaces of a SUS could detach and contaminate the final drug product. A realistic assessment of this risk requires reliable test methods that quantify and identify particulate matter present on the interior surfaces of SUSs. Clearly problematic is the common certification of the cleanliness of a SUS via a force-fit adaptation of the pharmacopeial standard USP <788> entitled "Particulate Matter in Injections". USP <788> does not describe a procedure for extraction of particulate matter from the interior surfaces of SUSs. In addition, application of Method 1 Light Obscuration significantly limits the probability of detection for particles in the visible size range (≥ 100 µm). In this article, we describe best practices for extracting, counting, sizing, and chemically identifying particulate matter on the interior surfaces of SUSs. Highly effective procedures for the extraction of particulate matter result from application of the qualification methodology described in a recently published ASTM standard. Filtration of the liquid extract concentrates particulate matter onto the surface of a membrane filter, allowing rapid particle counting and sizing using automated membrane microscopy, along with detailed chemical identification using infrared microscopy and/or automated confocal Raman microscopy.
从抗体和疫苗到基于细胞的疗法,各种生物制药的制造越来越多地在一次性使用处理设备中进行。一次性使用系统(SUS)在洁净室中制造、密封和消毒,可即拿即用且易于扩展。在 SUS 的“清洁构建”制造过程中的控制可降低 SUS 中颗粒物出现的可能性。然而,SUS 的尺寸、复杂性和有限的透明度显然限制了在目视检查过程中对 SUS 内部(与流体接触)表面上颗粒物的可检测性,最近的一项研究证明了这一点。在最终过滤器下游的应用或在无菌处理中,SUS 表面上的颗粒物可能会脱落并污染最终药物产品。要对这种风险进行现实评估,需要可靠的测试方法来定量和识别 SUS 内部表面上存在的颗粒物。一个明显存在问题的是,通过药典标准 USP <788> 中题为“注射液中的颗粒物”的强制适配来普遍认证 SUS 的清洁度。USP <788> 并未描述从 SUS 内部表面提取颗粒物的程序。此外,方法 1 光遮挡的应用极大地限制了对可见尺寸范围内(≥ 100 µm)颗粒的检测概率。在本文中,我们描述了从 SUS 内部表面提取、计数、尺寸测定和化学识别颗粒物的最佳实践。从最近发布的 ASTM 标准中描述的资格鉴定方法应用中,获得了高效的颗粒物提取程序。液体提取物的过滤将颗粒物浓缩到膜过滤器的表面上,允许使用自动化膜显微镜快速进行粒子计数和尺寸测定,以及使用红外显微镜和/或自动化共焦拉曼显微镜进行详细的化学鉴定。