Suppr超能文献

用于高能量密度锂金属电池的原位成型凝胶聚合物电解质。

In Situ Forming Gel Polymer Electrolyte for High Energy-Density Lithium Metal Batteries.

作者信息

Xue Jin-Xin, Liu Feng-Quan, Xiang Tian-Qi, Jia Si-Xin, Zhou Jian-Jun, Li Lin

机构信息

Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China.

College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China.

出版信息

Small. 2024 Jan;20(4):e2307553. doi: 10.1002/smll.202307553. Epub 2023 Sep 15.

Abstract

In situ forming gel polymer electrolyte (GPE) is one of the most feasible ways to improve the safety and cycle performances of lithium metal batteries with high energy density. However, most of the in situ formed GPEs are not compatible with high-voltage cathode materials. Here, this work provides a novel strategy to in situ form GPE based on the mechanism of Ritter reaction. The Ritter reaction in liquid electrolyte has the advantage of appropriate reaction temperature and no additional additives. The polymer chains are cross-linked by amide groups with the formation of GPE with superior electrochemical properties. The GPE has high ionic conductivity (1.84 mS cm ), wide electrochemical stability window (>5.25 V) and high lithium ion transference number (≈0.78), compatible with high-voltage cathode materials. The Li|LiNi Co Mn O batteries with in situ formed GPE show excellent long-term cycle stability (93.4%, 300 cycles). The density functional theory calculation and X-ray photoelectron spectroscopy results verify that the amide and nitrile groups are beneficial for stabilizing cathode structure and promoting uniform Li deposition on Li anode. Furthermore, the in situ formed GPE exhibits excellent electrochemical performance in Graphite|LiMn O and Graphite|LiNi Co Mn O pouch batteries. This approach is adaptable to current battery technologies, which will be sure to promote the development of high energy-density lithium-ion batteries.

摘要

原位形成凝胶聚合物电解质(GPE)是提高高能量密度锂金属电池安全性和循环性能最可行的方法之一。然而,大多数原位形成的GPE与高压正极材料不兼容。在此,这项工作基于 Ritter 反应机理提供了一种原位形成 GPE 的新策略。液体电解质中的 Ritter 反应具有反应温度适宜且无需额外添加剂的优点。聚合物链通过酰胺基团交联形成具有优异电化学性能的 GPE。该 GPE 具有高离子电导率(1.84 mS cm)、宽电化学稳定窗口(>5.25 V)和高锂离子迁移数(≈0.78),与高压正极材料兼容。采用原位形成 GPE 的 Li|LiNi Co Mn O 电池表现出优异的长期循环稳定性(300 次循环后为 93.4%)。密度泛函理论计算和 X 射线光电子能谱结果证实,酰胺基和腈基有利于稳定正极结构并促进锂在锂负极上的均匀沉积。此外,原位形成的 GPE 在石墨|LiMn O 和石墨|LiNi Co Mn O 软包电池中表现出优异的电化学性能。这种方法适用于当前的电池技术,必将推动高能量密度锂离子电池的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验