Department of Biochemistry & Molecular Genetics, Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville School of Medicine, Louisville, KY, United States.
Department of Biochemistry & Molecular Genetics, Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville School of Medicine, Louisville, KY, United States.
Vitam Horm. 2023;123:587-617. doi: 10.1016/bs.vh.2022.12.002. Epub 2022 Dec 16.
Dehydroepiandrosterone (3β-hydroxy-5-androsten-17-one, DHEA) and its sulfated metabolite DHEA-S are the most abundant circulating steroids and are precursors for active sex steroid hormones, estradiol and testosterone. DHEA has a broad range of reported effects in the central nervous system (CNS), cardiovascular system, adipose tissue, kidney, liver, and in the reproductive system. The mechanisms by which DHEA and DHEA-S initiate their biological effects are diverse. DHEA and DHEA-S may directly bind to plasma membrane (PM) receptors, including a DHEA-specific, G-protein coupled receptor (GPCR) in endothelial cells; various neuroreceptors, e.g., aminobutyric-acid-type A (GABA(A)), N-methyl-d-aspartate (NMDA) and sigma-1 (S1R) receptors (NMDAR and SIG-1R). DHEA and DHEA-S directly bind the nuclear androgen and estrogen receptors (AR, ERα, or ERβ) although with significantly lower binding affinities compared to the steroid hormones, e.g., testosterone, dihydrotestosterone, and estradiol, which are the cognate ligands for AR and ERs. Thus, extra-gonadal metabolism of DHEA to the sex hormones must be considered for many of the biological benefits of DHEA. DHEA also actives GPER1 (G protein coupled estrogen receptor 1). DHEA activates constitutive androstane receptor CAR (CAR) and proliferator activated receptor (PPARα) by indirect dephosphorylation. DHEA affects voltage-gated sodium and calcium ion channels and DHEA-2 activates TRPM3 (Transient Receptor Potential Cation Channel Subfamily M Member 3). This chapter updates our previous 2018 review pertaining to the physiological, biochemical, and molecular mechanisms of DHEA and DHEA-S activity.
脱氢表雄酮(3β-羟基-5-雄烯-17-酮,DHEA)及其硫酸化代谢物 DHEA-S 是循环中最丰富的类固醇,也是活性性激素雌激素和睾酮的前体。DHEA 在中枢神经系统(CNS)、心血管系统、脂肪组织、肾脏、肝脏和生殖系统中具有广泛的报道作用。DHEA 和 DHEA-S 引发其生物学效应的机制多种多样。DHEA 和 DHEA-S 可能直接与质膜(PM)受体结合,包括内皮细胞中 DHEA 特异性 G 蛋白偶联受体(GPCR);各种神经受体,例如 GABA-A 型(GABA(A))、N-甲基-D-天冬氨酸(NMDA)和 sigma-1(S1R)受体(NMDAR 和 SIG-1R)。DHEA 和 DHEA-S 直接与核雄激素和雌激素受体(AR、ERα 或 ERβ)结合,尽管与甾体激素(例如睾酮、二氢睾酮和雌二醇)相比,结合亲和力要低得多,后者是 AR 和 ERs 的同源配体。因此,对于 DHEA 的许多生物学益处,必须考虑 DHEA 到性激素的额外性腺代谢。DHEA 还激活 GPER1(G 蛋白偶联雌激素受体 1)。DHEA 通过间接去磷酸化激活组成型雄烷受体 CAR(CAR)和增殖激活受体(PPARα)。DHEA 影响电压门控钠离子和钙离子通道,DHEA-2 激活 TRPM3(瞬时受体电位阳离子通道亚家族 M 成员 3)。本章更新了我们之前关于 2018 年 DHEA 和 DHEA-S 活性的生理、生化和分子机制的综述。