Ma Yunlong, Deng Chunyu, Zhou Yijun, Zhang Yaru, Qiu Fei, Jiang Dingping, Zheng Gongwei, Li Jingjing, Shuai Jianwei, Zhang Yan, Yang Jian, Su Jianzhong
School of Biomedical Engineering, School of OphthalmoFlogy & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang 325101, China.
Cell Genom. 2023 Aug 18;3(9):100383. doi: 10.1016/j.xgen.2023.100383. eCollection 2023 Sep 13.
Advances in single-cell RNA sequencing (scRNA-seq) techniques have accelerated functional interpretation of disease-associated variants discovered from genome-wide association studies (GWASs). However, identification of trait-relevant cell populations is often impeded by inherent technical noise and high sparsity in scRNA-seq data. Here, we developed scPagwas, a computational approach that uncovers trait-relevant cellular context by integrating pathway activation transformation of scRNA-seq data and GWAS summary statistics. scPagwas effectively prioritizes trait-relevant genes, which facilitates identification of trait-relevant cell types/populations with high accuracy in extensive simulated and real datasets. Cellular-level association results identified a novel subpopulation of naive CD8 T cells related to COVID-19 severity and oligodendrocyte progenitor cell and microglia subsets with critical pathways by which genetic variants influence Alzheimer's disease. Overall, our approach provides new insights for the discovery of trait-relevant cell types and improves the mechanistic understanding of disease variants from a pathway perspective.
单细胞RNA测序(scRNA-seq)技术的进步加速了对从全基因组关联研究(GWAS)中发现的疾病相关变异的功能解释。然而,scRNA-seq数据中固有的技术噪声和高稀疏性常常阻碍了与性状相关的细胞群体的识别。在这里,我们开发了scPagwas,这是一种计算方法,通过整合scRNA-seq数据的通路激活转换和GWAS汇总统计信息来揭示与性状相关的细胞背景。scPagwas有效地对与性状相关的基因进行了优先级排序,这有助于在大量模拟和真实数据集中高精度地识别与性状相关的细胞类型/群体。细胞水平的关联结果确定了一个与COVID-19严重程度相关的新型幼稚CD8 T细胞亚群,以及少突胶质细胞祖细胞和小胶质细胞亚群,这些亚群具有遗传变异影响阿尔茨海默病的关键通路。总体而言,我们的方法为发现与性状相关的细胞类型提供了新见解,并从通路角度提高了对疾病变异的机制理解。