Liu Jiaxiang, Hao Jin, Lin Hangzheng, Pan Wei, Yang Jianfei, Feng Yang, Wang Gaoang, Li Jin, Jin Zuolin, Zhao Zhihe, Liu Zuozhu
Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou 310000, China.
Zhejiang University-University of Illinois at Urbana-Champaign Institute, Zhejiang University, Haining 314400, China.
Patterns (N Y). 2023 Aug 15;4(9):100825. doi: 10.1016/j.patter.2023.100825. eCollection 2023 Sep 8.
High-fidelity three-dimensional (3D) models of tooth-bone structures are valuable for virtual dental treatment planning; however, they require integrating data from cone-beam computed tomography (CBCT) and intraoral scans (IOS) using methods that are either error-prone or time-consuming. Hence, this study presents Deep Dental Multimodal Fusion (DDMF), an automatic multimodal framework that reconstructs 3D tooth-bone structures using CBCT and IOS. Specifically, the DDMF framework comprises CBCT and IOS segmentation modules as well as a multimodal reconstruction module with novel pixel representation learning architectures, prior knowledge-guided losses, and geometry-based 3D fusion techniques. Experiments on real-world large-scale datasets revealed that DDMF achieved superior segmentation performance on CBCT and IOS, achieving a 0.17 mm average symmetric surface distance (ASSD) for 3D fusion with a substantial processing time reduction. Additionally, clinical applicability studies have demonstrated DDMF's potential for accurately simulating tooth-bone structures throughout the orthodontic treatment process.
牙齿-骨骼结构的高保真三维(3D)模型对于虚拟牙科治疗计划很有价值;然而,它们需要使用容易出错或耗时的方法来整合来自锥形束计算机断层扫描(CBCT)和口腔内扫描(IOS)的数据。因此,本研究提出了深度牙科多模态融合(DDMF),这是一个自动多模态框架,可使用CBCT和IOS重建3D牙齿-骨骼结构。具体而言,DDMF框架包括CBCT和IOS分割模块以及一个多模态重建模块,该模块具有新颖的像素表示学习架构、先验知识引导的损失和基于几何的3D融合技术。在真实世界的大规模数据集上进行的实验表明,DDMF在CBCT和IOS上实现了卓越的分割性能,在3D融合时平均对称表面距离(ASSD)达到0.17毫米,同时大幅减少了处理时间。此外,临床适用性研究已经证明了DDMF在整个正畸治疗过程中准确模拟牙齿-骨骼结构的潜力。