Suppr超能文献

比较机器学习模型预测行直接经皮冠状动脉介入治疗的急性 ST 段抬高型心肌梗死患者 1 年不良结局的效果。

Comparison of machine-learning models for the prediction of 1-year adverse outcomes of patients undergoing primary percutaneous coronary intervention for acute ST-elevation myocardial infarction.

机构信息

Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.

Department of Radiology, Iran University of Medical Sciences, Tehran, Iran.

出版信息

Clin Cardiol. 2024 Jan;47(1):e24157. doi: 10.1002/clc.24157. Epub 2023 Sep 18.

Abstract

BACKGROUND

Acute ST-elevation myocardial infarction (STEMI) is a leading cause of mortality and morbidity worldwide, and primary percutaneous coronary intervention (PCI) is the preferred treatment option.

HYPOTHESIS

Machine learning (ML) models have the potential to predict adverse clinical outcomes in STEMI patients treated with primary PCI. However, the comparative performance of different ML models for this purpose is unclear.

METHODS

This study used a retrospective registry-based design to recruit consecutive hospitalized patients diagnosed with acute STEMI and treated with primary PCI from 2011 to 2019, at Tehran Heart Center, Tehran, Iran. Four ML models, namely Gradient Boosting Machine (GBM), Distributed Random Forest (DRF), Logistic Regression (LR), and Deep Learning (DL), were used to predict major adverse cardiovascular events (MACE) during 1-year follow-up.

RESULTS

A total of 4514 patients (3498 men and 1016 women) were enrolled, with MACE occurring in 610 (13.5%) subjects during follow-up. The mean age of the population was 62.1 years, and the MACE group was significantly older than the non-MACE group (66.2 vs. 61.5 years, p < .001). The learning process utilized 70% (n = 3160) of the total population, and the remaining 30% (n = 1354) served as the testing data set. DRF and GBM models demonstrated the best performance in predicting MACE, with an area under the curve of 0.92 and 0.91, respectively.

CONCLUSION

ML-based models, such as DRF and GBM, can effectively identify high-risk STEMI patients for adverse events during follow-up. These models can be useful for personalized treatment strategies, ultimately improving clinical outcomes and reducing the burden of disease.

摘要

背景

急性 ST 段抬高型心肌梗死(STEMI)是全球范围内导致死亡率和发病率的主要原因,而经皮冠状动脉介入治疗(PCI)是首选的治疗方法。

假设

机器学习(ML)模型有可能预测接受直接 PCI 治疗的 STEMI 患者的不良临床结局。然而,目前尚不清楚不同的 ML 模型在这方面的表现。

方法

本研究采用回顾性基于注册的设计,于 2011 年至 2019 年在伊朗德黑兰心脏中心连续招募因急性 STEMI 住院并接受直接 PCI 治疗的患者。使用四种 ML 模型,即梯度提升机(GBM)、分布式随机森林(DRF)、逻辑回归(LR)和深度学习(DL),来预测 1 年随访期间的主要不良心血管事件(MACE)。

结果

共纳入 4514 例患者(3498 例男性和 1016 例女性),其中 610 例(13.5%)在随访期间发生 MACE。人群的平均年龄为 62.1 岁,MACE 组明显比非 MACE 组年龄大(66.2 岁比 61.5 岁,p<0.001)。学习过程使用了总人群的 70%(n=3160),其余 30%(n=1354)作为测试数据集。DRF 和 GBM 模型在预测 MACE 方面表现最佳,曲线下面积分别为 0.92 和 0.91。

结论

基于 ML 的模型,如 DRF 和 GBM,可以有效地识别高危 STEMI 患者,以便在随访期间发生不良事件。这些模型可以用于个性化的治疗策略,最终改善临床结局并减轻疾病负担。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验