Department of Physics, Florida Atlantic University, Boca Raton, Florida, USA.
RSO, South Florida Proton Therapy Institute, Delray Beach, Florida, USA.
J Appl Clin Med Phys. 2023 Dec;24(12):e14148. doi: 10.1002/acm2.14148. Epub 2023 Sep 18.
Dosimetric uncertainties in very small (≤1.5 × 1.5 cm ) photon fields are remarkably higher, which undermines the validity of the virtual cone (VC) technique with a diminutive and variable MLC fields. We evaluate the accuracy and reproducibility of the VC method with a very small, fixed MLC field setting, called a fixed virtual cone (fVC), for small target radiosurgery such as trigeminal neuralgia (TGN). The fVC is characterized by 0.5 cm x 0.5 cm high-definition (HD) MLC field of 10MV FFF beam defined at 100 cm SAD, while backup jaws are positioned at 1.5 cm x 1.5 cm. A spherical dose distribution equivalent to 5 mm (diameter) physical cone was generated using 10-14 non-coplanar, partial arcs. Dosimetric accuracy was validated using SRS diode (PTW 60018), SRS MapCHECK (SNC) measurements. As a quality assurance measure, 10 treatment plans (SRS) for TGN, consisting of various arc ranges at different collimator angles were analyzed using 6 MV FFF and 10 MV FFF beams, including a field-by-field study (n = 130 fields). Dose outputs were compared between the Eclipse TPS and measurements (SRS MapCHECK). Moreover, dosimetric changes in the field defining fVC, prompted by a minute (± 0.5-1.0 mm) leaf shift, was examined among TPS, diode measurements, and Monte Carlo (MC) simulations. The beam model for fVC was validated (≤3% difference) using SRS MapCHECK based absolute dose measurements. The equivalent diameters of the 50% isodose distribution were found comparable to that of a 5 mm cone. Additionally, the comparison of field output factors, dose per MU between the TPS and SRS diode measurements using the fVC field, including ± 1 mm leaf shift, yielded average discrepancies within 5.5% and 3.5% for 6 MV FFF and 10 MV FFF beams, respectively. Overall, the fVC method is a credible alternative to the physical cone (5 mm) that can be applied in routine radiosurgical treatment of TGN.
在非常小的(≤1.5×1.5 厘米)光子射野中,剂量学不确定性显著增加,这使得微小且可变的多叶准直器(MLC)射野的虚拟圆锥(VC)技术的有效性受到质疑。我们评估了一种非常小的、固定的多叶准直器设置(称为固定虚拟圆锥(fVC))的 VC 方法的准确性和可重复性,用于治疗三叉神经痛(TGN)等小靶区立体定向放射外科。fVC 的特点是在 100cmSAD 处定义的 10MVFFF 射束的 0.5cmx0.5cm 高清晰度(HD)MLC 场,而备用准直器位于 1.5cmx1.5cm。使用 10-14 个非共面的部分弧生成等效于 5mm(直径)物理圆锥的球形剂量分布。使用 SRS 二极管(PTW60018)、SRSMapCHECK(SNC)测量验证剂量学准确性。作为质量保证措施,对包括不同准直器角度的各种弧范围在内的 10 个 TGN 治疗计划(SRS)进行了分析,使用 6MVFFF 和 10MVFFF 射线进行分析,包括场研究(n=130 个场)。在 EclipseTPS 和测量(SRSMapCHECK)之间比较剂量输出。此外,还研究了在 TPS、二极管测量和蒙特卡罗(MC)模拟中,由叶片微小(±0.5-1.0mm)移动引起的定义 fVC 的射野的剂量学变化。使用基于 SRSMapCHECK 的绝对剂量测量验证了 fVC 的束模型(≤3%差异)。发现 50%等剂量分布的等效直径与 5mm 圆锥的等效直径相当。此外,使用 fVC 场比较 TPS 和 SRS 二极管测量的场输出因子和每 MU 的剂量,包括±1mm 叶片移动,对于 6MVFFF 和 10MVFFF 射线,分别产生平均差异在 5.5%和 3.5%以内。总体而言,fVC 方法是物理圆锥(5mm)的可靠替代方法,可用于 TGN 的常规放射外科治疗。