Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, Augusta, GA, USA.
Georgia Institute of Technology, Atlanta, GA, USA.
Sci Rep. 2023 Sep 20;13(1):15562. doi: 10.1038/s41598-023-42657-2.
Unsupervised clustering of intensive care unit (ICU) medications may identify unique medication clusters (i.e., pharmacophenotypes) in critically ill adults. We performed an unsupervised analysis with Restricted Boltzmann Machine of 991 medications profiles of patients managed in the ICU to explore pharmacophenotypes that correlated with ICU complications (e.g., mechanical ventilation) and patient-centered outcomes (e.g., length of stay, mortality). Six unique pharmacophenotypes were observed, with unique medication profiles and clinically relevant differences in ICU complications and patient-centered outcomes. While pharmacophenotypes 2 and 4 had no statistically significant difference in ICU length of stay, duration of mechanical ventilation, or duration of vasopressor use, their mortality differed significantly (9.0% vs. 21.9%, p < 0.0001). Pharmacophenotype 4 had a mortality rate of 21.9%, compared with the rest of the pharmacophenotypes ranging from 2.5 to 9%. Phenotyping approaches have shown promise in classifying the heterogenous syndromes of critical illness to predict treatment response and guide clinical decision support systems but have never included comprehensive medication information. This first-ever machine learning approach revealed differences among empirically-derived subgroups of ICU patients that are not typically revealed by traditional classifiers. Identification of pharmacophenotypes may enable enhanced decision making to optimize treatment decisions.
未监督的 ICU 药物聚类分析可以确定重症成人患者中独特的药物聚类(即药物表型)。我们对 ICU 患者管理的 991 种药物进行了受限玻尔兹曼机器的无监督分析,以探索与 ICU 并发症(如机械通气)和以患者为中心的结局(如住院时间、死亡率)相关的药物表型。观察到六个独特的药物表型,具有独特的药物特征和 ICU 并发症和以患者为中心的结局方面的临床相关差异。虽然表型 2 和 4 在 ICU 住院时间、机械通气时间或血管加压药使用时间上没有统计学上的显著差异,但它们的死亡率有显著差异(9.0%比 21.9%,p<0.0001)。表型 4 的死亡率为 21.9%,而其他表型的死亡率范围为 2.5%至 9%。表型分析在对重症疾病的异质综合征进行分类以预测治疗反应和指导临床决策支持系统方面显示出了前景,但从未包括全面的药物信息。这种前所未有的机器学习方法揭示了 ICU 患者经验性亚组之间的差异,这些差异通常不能通过传统分类器揭示。药物表型的鉴定可能能够增强决策制定,以优化治疗决策。