Section of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy.
Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy.
Am J Pathol. 2023 Dec;193(12):2099-2110. doi: 10.1016/j.ajpath.2023.08.013. Epub 2023 Sep 20.
The presence of tumor-infiltrating lymphocytes (TILs) is associated with a favorable prognosis of primary melanoma (PM). Recently, artificial intelligence (AI)-based approach in digital pathology was proposed for the standardized assessment of TILs on hematoxylin and eosin-stained whole slide images (WSIs). Herein, the study applied a new convolution neural network (CNN) analysis of PM WSIs to automatically assess the infiltration of TILs and extract a TIL score. A CNN was trained and validated in a retrospective cohort of 307 PMs including a training set (237 WSIs, 57,758 patches) and an independent testing set (70 WSIs, 29,533 patches). An AI-based TIL density index (AI-TIL) was identified after the classification of tumor patches by the presence or absence of TILs. The proposed CNN showed high performance in recognizing TILs in PM WSIs, showing 100% specificity and sensitivity on the testing set. The AI-based TIL index correlated with conventional TIL evaluation and clinical outcome. The AI-TIL index was an independent prognostic marker associated directly with a favorable prognosis. A fully automated and standardized AI-TIL appeared to be superior to conventional methods at differentiating the PM clinical outcome. Further studies are required to develop an easy-to-use tool to assist pathologists to assess TILs in the clinical evaluation of solid tumors.
肿瘤浸润淋巴细胞 (TILs) 的存在与原发性黑色素瘤 (PM) 的良好预后相关。最近,基于人工智能 (AI) 的数字病理学方法被提出用于对苏木精和伊红染色的全切片图像 (WSIs) 上的 TILs 进行标准化评估。在此,该研究应用了一种新的卷积神经网络 (CNN) 分析 PM WSIs,以自动评估 TILs 的浸润并提取 TIL 评分。在包括训练集 (237 张 WSIs,57758 个斑块) 和独立测试集 (70 张 WSIs,29533 个斑块) 的回顾性队列中对 CNN 进行了训练和验证。通过存在或不存在 TILs 对肿瘤斑块进行分类后,确定了基于 AI 的 TIL 密度指数 (AI-TIL)。该提出的 CNN 在识别 PM WSIs 中的 TILs 方面表现出很高的性能,在测试集上显示出 100%的特异性和敏感性。基于 AI 的 TIL 指数与传统的 TIL 评估和临床结果相关。AI-TIL 指数是一个独立的预后标志物,与良好的预后直接相关。全自动和标准化的 AI-TIL 似乎在区分 PM 临床结果方面优于传统方法。需要进一步的研究来开发一种易于使用的工具,以协助病理学家评估实体肿瘤的 TILs。