Divison of General Internal Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
University of Barcelona, Barcelona, Catalunya, Spain.
Open Heart. 2023 Sep;10(2). doi: 10.1136/openhrt-2022-002228.
Computer-assisted interpretation of single-lead ECG is the preliminary method for clinicians to flag and further evaluate an arrhythmia of clinical importance for acutely ill patients. Critical scrutiny of novel detection algorithms is lacking, particularly in external real-world data sets. This study's objective was to evaluate a hybrid machine learning model's ability to classify eight arrhythmias from a single-lead ECG signal from acutely ill patients.
This cross-sectional external retrospective evaluation of a previously trained hybrid machine learning model against an ECG reading team in the setting of home hospital care (acute care delivered at home substituting for traditional hospital care) draws from patients admitted at two hospitals in Boston, Massachusetts, USA between 12 June 2017 and 23 November 2019. We calculated classifier statistics for each arrhythmia, all arrhythmias and strips where the model identified normal sinus rhythm.
The model analysed 2 680 162 min of single-lead ECG data from 423 patients and identified 691 478 arrhythmias. Patients had a mean age of 70 years (SD, 18), 60% were female and 45% were white. For any arrhythmia, the model had a sensitivity of 98%, a specificity of 100%, an accuracy of 98%, a positive predictive value of 100%, a negative predictive value of 93% and an F Score of 99%. Performance was best for pause (F Score, 99%) and worst for paroxysmal supraventricular tachycardia (F Score, 92%). The model's false positive rate for any arrhythmia was 0.2%, ranging from 0.4% for pause to 7.2% for paroxysmal supraventricular tachycardia. The false negative rate for any arrhythmia was 1.9%.
A hybrid machine learning model was effective at classifying common cardiac arrhythmias from a single-lead ECG in real-world data.
单导联心电图的计算机辅助解读是临床医生标记和进一步评估对急症患者具有临床重要性的心律失常的初步方法。对新型检测算法的严格审查不足,特别是在外部真实世界数据集方面。本研究的目的是评估一种混合机器学习模型从急症患者的单导联心电图信号中分类八种心律失常的能力。
这项对先前训练的混合机器学习模型的横断面外部回顾性评估,是在家庭医院护理(在家庭中提供替代传统医院护理的急性护理)环境中进行的,该评估来自美国马萨诸塞州波士顿的两家医院在 2017 年 6 月 12 日至 2019 年 11 月 23 日期间收治的患者。我们为每个心律失常、所有心律失常以及模型识别正常窦性节律的条带计算了分类器统计数据。
该模型分析了来自 423 名患者的 2680162 分钟单导联心电图数据,共识别出 691478 种心律失常。患者的平均年龄为 70 岁(标准差为 18),60%为女性,45%为白人。对于任何心律失常,该模型的敏感性为 98%,特异性为 100%,准确性为 98%,阳性预测值为 100%,阴性预测值为 93%,F 分数为 99%。性能最好的是停顿(F 分数为 99%),最差的是阵发性室上性心动过速(F 分数为 92%)。该模型任何心律失常的假阳性率为 0.2%,范围从停顿的 0.4%到阵发性室上性心动过速的 7.2%。任何心律失常的假阴性率为 1.9%。
混合机器学习模型在真实世界数据中从单导联心电图有效分类常见的心律失常。