Suppr超能文献

ARISE:通过子结构感知在属性网络上进行图异常检测

ARISE: Graph Anomaly Detection on Attributed Networks via Substructure Awareness.

作者信息

Duan Jingcan, Xiao Bin, Wang Siwei, Zhou Haifang, Liu Xinwang

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Dec;35(12):18172-18185. doi: 10.1109/TNNLS.2023.3312655. Epub 2024 Dec 2.

Abstract

Recently, graph anomaly detection on attributed networks has attracted growing attention in data mining and machine learning communities. Apart from attribute anomalies, graph anomaly detection also aims at suspicious topological-abnormal nodes that exhibit collective anomalous behavior. Closely connected uncorrelated node groups form uncommonly dense substructures in the network. However, existing methods overlook that the topology anomaly detection performance can be improved by recognizing such a collective pattern. To this end, we propose a new graph anomaly detection framework on attributed networks via substructure awareness (ARISE). Unlike previous algorithms, we focus on the substructures in the graph to discern abnormalities. Specifically, we establish a region proposal module to discover high-density substructures in the network as suspicious regions. The average node-pair similarity can be regarded as the topology anomaly degree of nodes within substructures. Generally, the lower the similarity, the higher the probability that internal nodes are topology anomalies. To distill better embeddings of node attributes, we further introduce a graph contrastive learning scheme, which observes attribute anomalies in the meantime. In this way, ARISE can detect both topology and attribute anomalies. Ultimately, extensive experiments on benchmark datasets show that ARISE greatly improves detection performance (up to 7.30% AUC and 17.46% AUPRC gains) compared to state-of-the-art attributed networks anomaly detection (ANAD) algorithms.

摘要

最近,属性网络上的图异常检测在数据挖掘和机器学习社区中受到了越来越多的关注。除了属性异常外,图异常检测还旨在检测表现出集体异常行为的可疑拓扑异常节点。紧密相连的不相关节点组在网络中形成了异常密集的子结构。然而,现有方法忽略了通过识别这种集体模式可以提高拓扑异常检测性能。为此,我们提出了一种基于属性网络的通过子结构感知的新型图异常检测框架(ARISE)。与先前的算法不同,我们专注于图中的子结构以识别异常。具体来说,我们建立了一个区域提议模块来发现网络中的高密度子结构作为可疑区域。平均节点对相似度可被视为子结构内节点的拓扑异常程度。一般来说,相似度越低,内部节点是拓扑异常的概率就越高。为了提取更好的节点属性嵌入,我们进一步引入了一种图对比学习方案,该方案同时观察属性异常。通过这种方式,ARISE可以检测拓扑和属性异常。最终,在基准数据集上的大量实验表明,与最先进的属性网络异常检测(ANAD)算法相比,ARISE大大提高了检测性能(AUC提升高达7.30%,AUPRC提升高达17.46%)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验