Suppr超能文献

基于人工智能的急诊科急性胸痛患者主动脉计算机断层扫描血管造影术中冠状动脉狭窄的机会性检测

Artificial intelligence-based opportunistic detection of coronary artery stenosis on aortic computed tomography angiography in emergency department patients with acute chest pain.

作者信息

Glessgen Carl G, Boulougouri Marianthi, Vallée Jean-Paul, Noble Stéphane, Platon Alexandra, Poletti Pierre-Alexandre, Paul Jean-François, Deux Jean-François

机构信息

Department of Radiology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva 1205, Switzerland.

Department of Cardiology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva 1205, Switzerland.

出版信息

Eur Heart J Open. 2023 Sep 7;3(5):oead088. doi: 10.1093/ehjopen/oead088. eCollection 2023 Sep.

Abstract

AIMS

To evaluate a deep-learning model (DLM) for detecting coronary stenoses in emergency room patients with acute chest pain (ACP) explored with electrocardiogram-gated aortic computed tomography angiography (CTA) to rule out aortic dissection.

METHODS AND RESULTS

This retrospective study included 217 emergency room patients (41% female, mean age 67.2 years) presenting with ACP and evaluated by aortic CTA at our institution. Computed tomography angiography was assessed by two readers, who rated the coronary arteries as 1 (no stenosis), 2 (<50% stenosis), or 3 (≥50% stenosis). Computed tomography angiography was categorized as high quality (HQ), if all three main coronary arteries were analysable and low quality (LQ) otherwise. Curvilinear coronary images were rated by a DLM using the same system. Per-patient and per-vessel analyses were conducted. One hundred and twenty-one patients had HQ and 96 LQ CTA. Sensitivity, specificity, positive predictive value, negative predictive value (NPV), and accuracy of the DLM in patients with high-quality image for detecting ≥50% stenoses were 100, 62, 59, 100, and 75% at the patient level and 98, 79, 57, 99, and 84% at the vessel level, respectively. Sensitivity was lower (79%) for detecting ≥50% stenoses at the vessel level in patients with low-quality image. Diagnostic accuracy was 84% in both groups. All 12 patients with acute coronary syndrome (ACS) and stenoses by invasive coronary angiography (ICA) were rated 3 by the DLM.

CONCLUSION

A DLM demonstrated high NPV for significant coronary artery stenosis in patients with ACP. All patients with ACS and stenoses by ICA were identified by the DLM.

摘要

目的

评估一种深度学习模型(DLM),用于检测急诊室急性胸痛(ACP)患者的冠状动脉狭窄,这些患者通过心电图门控主动脉计算机断层扫描血管造影(CTA)进行检查以排除主动脉夹层。

方法和结果

这项回顾性研究纳入了217例在我院因ACP就诊并接受主动脉CTA评估的急诊室患者(41%为女性,平均年龄67.2岁)。两名阅片者对计算机断层扫描血管造影进行评估,将冠状动脉评为1级(无狭窄)、2级(<50%狭窄)或3级(≥50%狭窄)。如果所有三支主要冠状动脉均可分析,则将计算机断层扫描血管造影分类为高质量(HQ),否则为低质量(LQ)。DLM使用相同系统对冠状动脉曲线图像进行评级。进行了患者层面和血管层面的分析。121例患者的CTA为HQ,96例为LQ。DLM在高质量图像患者中检测≥50%狭窄的患者层面敏感性、特异性、阳性预测值、阴性预测值(NPV)和准确性分别为100%、62%、59%、100%和75%,血管层面分别为98%、79%、57%、99%和84%。在低质量图像患者中,血管层面检测≥50%狭窄的敏感性较低(79%)。两组的诊断准确性均为84%。所有12例经有创冠状动脉造影(ICA)证实为急性冠状动脉综合征(ACS)且有狭窄的患者,DLM均评为3级。

结论

DLM在ACP患者中对显著冠状动脉狭窄显示出较高的NPV。DLM识别出了所有经ICA证实为ACS且有狭窄的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/052f/10516619/aa2f667f7ff5/oead088_ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验