Phan Tin, Zitzmann Carolin, Chew Kara W, Smith Davey M, Daar Eric S, Wohl David A, Eron Joseph J, Currier Judith S, Hughes Michael D, Choudhary Manish C, Deo Rinki, Li Jonathan Z, Ribeiro Ruy M, Ke Ruian, Perelson Alan S
Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA.
Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
bioRxiv. 2023 Sep 17:2023.09.14.557679. doi: 10.1101/2023.09.14.557679.
The COVID-19 pandemic has led to over 760 million cases and 6.9 million deaths worldwide. To mitigate the loss of lives, emergency use authorization was given to several anti-SARS-CoV-2 monoclonal antibody (mAb) therapies for the treatment of mild-to-moderate COVID-19 in patients with a high risk of progressing to severe disease. Monoclonal antibodies used to treat SARS-CoV-2 target the spike protein of the virus and block its ability to enter and infect target cells. Monoclonal antibody therapy can thus accelerate the decline in viral load and lower hospitalization rates among high-risk patients with susceptible variants. However, viral resistance has been observed, in some cases leading to a transient viral rebound that can be as large as 3-4 orders of magnitude. As mAbs represent a proven treatment choice for SARS-CoV-2 and other viral infections, evaluation of treatment-emergent mAb resistance can help uncover underlying pathobiology of SARS-CoV-2 infection and may also help in the development of the next generation of mAb therapies. Although resistance can be expected, the large rebounds observed are much more difficult to explain. We hypothesize replenishment of target cells is necessary to generate the high transient viral rebound. Thus, we formulated two models with different mechanisms for target cell replenishment (homeostatic proliferation and return from an innate immune response anti-viral state) and fit them to data from persons with SARS-CoV-2 treated with a mAb. We showed that both models can explain the emergence of resistant virus associated with high transient viral rebounds. We found that variations in the target cell supply rate and adaptive immunity parameters have a strong impact on the magnitude or observability of the viral rebound associated with the emergence of resistant virus. Both variations in target cell supply rate and adaptive immunity parameters may explain why only some individuals develop observable transient resistant viral rebound. Our study highlights the conditions that can lead to resistance and subsequent viral rebound in mAb treatments during acute infection.
新冠疫情已在全球导致超过7.6亿例感染和690万人死亡。为减少生命损失,几种抗SARS-CoV-2单克隆抗体(mAb)疗法获得了紧急使用授权,用于治疗有进展为重症疾病高风险的轻至中度新冠肺炎患者。用于治疗SARS-CoV-2的单克隆抗体靶向该病毒的刺突蛋白,并阻断其进入和感染靶细胞的能力。因此,单克隆抗体疗法可加速高风险易感变异患者体内病毒载量的下降,并降低住院率。然而,已观察到病毒耐药性,在某些情况下会导致短暂的病毒反弹,其幅度可达3至4个数量级。由于单克隆抗体是治疗SARS-CoV-2和其他病毒感染的一种经证实的治疗选择,评估治疗中出现的单克隆抗体耐药性有助于揭示SARS-CoV-2感染的潜在病理生物学机制,也可能有助于下一代单克隆抗体疗法的开发。虽然耐药性是可以预期的,但观察到的大幅反弹却更难解释。我们假设靶细胞的补充对于产生高幅度的短暂病毒反弹是必要的。因此,我们构建了两个具有不同靶细胞补充机制(稳态增殖和从先天免疫反应抗病毒状态恢复)的模型,并将它们与接受单克隆抗体治疗的SARS-CoV-2患者的数据进行拟合。我们表明,这两个模型都可以解释与高幅度短暂病毒反弹相关的耐药病毒的出现。我们发现,靶细胞供应率和适应性免疫参数的变化对与耐药病毒出现相关的病毒反弹幅度或可观察性有很大影响。靶细胞供应率和适应性免疫参数的变化都可以解释为什么只有一些个体出现可观察到的短暂耐药病毒反弹。我们的研究突出了在急性感染期间单克隆抗体治疗中可能导致耐药性及随后病毒反弹的条件。