Suppr超能文献

解析生殖细胞和体细胞中类似时钟突变的来源。

Disentangling sources of clock-like mutations in germline and soma.

作者信息

Spisak Natanael, de Manuel Marc, Milligan William, Sella Guy, Przeworski Molly

机构信息

Department of Biological Sciences, Columbia University, New York, United States.

Program for Mathematical Genomics, Columbia University, New York, United States.

出版信息

bioRxiv. 2023 Sep 12:2023.09.07.556720. doi: 10.1101/2023.09.07.556720.

Abstract

The rates of mutations vary across cell types. To identify causes of this variation, mutations are often decomposed into a combination of the single base substitution (SBS) "signatures" observed in germline, soma and tumors, with the idea that each signature corresponds to one or a small number of underlying mutagenic processes. Two such signatures turn out to be ubiquitous across cell types: SBS signature 1, which consists primarily of transitions at methylated CpG sites caused by spontaneous deamination, and the more diffuse SBS signature 5, which is of unknown etiology. In cancers, the number of mutations attributed to these two signatures accumulates linearly with age of diagnosis, and thus the signatures have been termed "clock-like." To better understand this clock-like behavior, we develop a mathematical model that includes DNA replication errors, unrepaired damage, and damage repaired incorrectly. We show that mutational signatures can exhibit clock-like behavior because cell divisions occur at a constant rate and/or because damage rates remain constant over time, and that these distinct sources can be teased apart by comparing cell lineages that divide at different rates. With this goal in mind, we analyze the rate of accumulation of mutations in multiple cell types, including soma as well as male and female germline. We find no detectable increase in SBS signature 1 mutations in neurons and only a very weak increase in mutations assigned to the female germline, but a significant increase with time in rapidly-dividing cells, suggesting that SBS signature 1 is driven by rounds of DNA replication occurring at a relatively fixed rate. In contrast, SBS signature 5 increases with time in all cell types, including post-mitotic ones, indicating that it accumulates independently of cell divisions; this observation points to errors in DNA repair as the key underlying mechanism. Thus, the two "clock-like" signatures observed across cell types likely have distinct origins, one set by rates of cell division, the other by damage rates.

摘要

突变率在不同细胞类型中有所不同。为了确定这种差异的原因,突变通常被分解为在种系、体细胞和肿瘤中观察到的单碱基替换(SBS)“特征”的组合,其理念是每个特征对应一个或少数几个潜在的诱变过程。事实证明,有两种这样的特征在所有细胞类型中都普遍存在:SBS特征1,主要由自发脱氨基导致的甲基化CpG位点的转换组成;以及更分散的SBS特征5,其病因不明。在癌症中,归因于这两种特征的突变数量随诊断年龄呈线性累积,因此这些特征被称为“时钟样”。为了更好地理解这种时钟样行为,我们开发了一个数学模型,该模型包括DNA复制错误、未修复的损伤以及错误修复的损伤。我们表明,突变特征可以表现出时钟样行为,因为细胞分裂以恒定速率发生和/或因为损伤率随时间保持恒定,并且通过比较以不同速率分裂的细胞谱系,可以区分这些不同的来源。出于这个目的,我们分析了多种细胞类型(包括体细胞以及雄性和雌性种系)中突变的累积速率。我们发现神经元中SBS特征1的突变没有可检测到的增加,而分配给雌性种系的突变只有非常微弱的增加,但在快速分裂的细胞中随时间有显著增加,这表明SBS特征1是由以相对固定速率发生的多轮DNA复制驱动的。相比之下,SBS特征5在所有细胞类型(包括有丝分裂后的细胞类型)中都随时间增加,这表明它的累积与细胞分裂无关;这一观察结果表明DNA修复错误是关键的潜在机制。因此,在所有细胞类型中观察到的这两种“时钟样”特征可能有不同的起源,一种由细胞分裂速率决定,另一种由损伤速率决定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3d3/10515775/4f82d86f2883/nihpp-2023.09.07.556720v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验