Suppr超能文献

利用机器学习实现黑色素瘤和痣的准确检测与诊断:皮肤病学的跨学科研究

Leveraging Machine Learning for Accurate Detection and Diagnosis of Melanoma and Nevi: An Interdisciplinary Study in Dermatology.

作者信息

Riazi Esfahani Parsa, Mazboudi Pasha, Reddy Akshay J, Farasat Victoria P, Guirgus Monica E, Tak Nathaniel, Min Mildred, Arakji Gordon H, Patel Rakesh

机构信息

Medicine, California University of Science and Medicine, Colton, USA.

Biology, Irvine Valley College, Irvine, USA.

出版信息

Cureus. 2023 Aug 25;15(8):e44120. doi: 10.7759/cureus.44120. eCollection 2023 Aug.

Abstract

This study explores the application of machine learning and deep learning algorithms to facilitate the accurate diagnosis of melanoma, a type of malignant skin cancer, and benign nevi. Leveraging a dataset of 793 dermatological images from the Kaggle online platform (Google LLC, Mountain View, California, United States), we developed a model that can accurately differentiate between these lesions based on their distinctive features. The dataset was divided into training (80%), validation (10%), and testing (10%) sets to optimize model performance and ensure its generalizability. Our findings demonstrate the potential of machine learning algorithms in enhancing the efficiency and accuracy of melanoma and nevi detection, with the developed model exhibiting robust performance metrics. Nonetheless, limitations exist due to the potential lack of comprehensive representation of melanoma and nevi cases in the dataset, and variations in image quality and acquisition methods, which may influence the model's performance in real-world clinical settings. Therefore, further research, validation studies, and integration into clinical practice are necessary to ensure the reliability and generalizability of these models. This study underscores the promise of artificial intelligence in advancing dermatologic diagnostics, aiming to improve patient outcomes by supporting early detection and treatment initiation for melanoma.

摘要

本研究探索机器学习和深度学习算法在促进黑色素瘤(一种恶性皮肤癌)和良性痣的准确诊断中的应用。利用来自美国加利福尼亚州山景城谷歌有限责任公司旗下Kaggle在线平台的793张皮肤病图像数据集,我们开发了一种模型,该模型能够根据这些病变的独特特征准确区分它们。数据集被分为训练集(80%)、验证集(10%)和测试集(10%),以优化模型性能并确保其通用性。我们的研究结果证明了机器学习算法在提高黑色素瘤和痣检测的效率和准确性方面的潜力,所开发的模型表现出强大的性能指标。尽管如此,由于数据集中可能缺乏黑色素瘤和痣病例的全面代表性,以及图像质量和采集方法的差异,这可能会影响模型在实际临床环境中的性能,因此存在局限性。因此,需要进一步的研究、验证研究并将其整合到临床实践中,以确保这些模型的可靠性和通用性。本研究强调了人工智能在推进皮肤病诊断方面的前景,旨在通过支持黑色素瘤的早期检测和治疗启动来改善患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e201/10518209/86ce8841fbbc/cureus-0015-00000044120-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验