Choi Hojoong, Seo Sehun, Yoon Chang Jae, Ahn Jae-Bin, Kim Chan-Sol, Jung Yoonsung, Kim Yejoon, Toma Francesca M, Kim Heejoo, Lee Sanghan
School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
Adv Sci (Weinh). 2023 Nov;10(33):e2303106. doi: 10.1002/advs.202303106. Epub 2023 Sep 26.
Despite achievements in the remarkable photoelectrochemical (PEC) performance of photoelectrodes based on organometal halide perovskites (OHPs), the scaling up of small-scale OHP-based PEC systems to large-scale systems remains a great challenge for their practical application in solar water splitting. Significant resistive losses and intrinsic defects are major obstacles to the scaling up of OHP-based PEC systems, leading to the PEC performance degradation of large-scale OHP photoelectrodes. Herein, a scalable design of the OHP-based PEC systems by modularization of the optimized OHP photoelectrodes exhibiting a high solar-to-hydrogen conversion efficiency of 10.4% is suggested. As a proof-of-concept, the OHP-based PEC module achieves an optimal PEC performance by avoiding major obstacles in the scaling up of the OHP photoelectrodes. The constructed OHP module is composed of a total of 16 OHP photoelectrodes, and a photocurrent of 11.52 mA is achieved under natural sunlight without external bias. The successful operation of unassisted solar water splitting using the OHP module without external bias can provide insights into the design of scalable OHP-based PEC systems for future practical application and commercialization.
尽管基于有机金属卤化物钙钛矿(OHP)的光电极在光致电化学(PEC)性能方面取得了显著成就,但将小规模的基于OHP的PEC系统扩大到大规模系统仍然是其在太阳能水分解实际应用中的巨大挑战。显著的电阻损耗和固有缺陷是扩大基于OHP的PEC系统规模的主要障碍,导致大规模OHP光电极的PEC性能下降。在此,提出了一种基于OHP的PEC系统的可扩展设计,通过对优化后的OHP光电极进行模块化,其太阳能到氢能的转换效率高达10.4%。作为概念验证,基于OHP的PEC模块通过避免OHP光电极扩大规模过程中的主要障碍,实现了最佳的PEC性能。构建的OHP模块总共由16个OHP光电极组成,在自然阳光下无外部偏压的情况下实现了11.52 mA的光电流。使用无外部偏压的OHP模块成功进行无辅助太阳能水分解,可为未来基于OHP的可扩展PEC系统的实际应用和商业化设计提供见解。