Suppr超能文献

基于网络方法的矩阵稳定性与分岔分析

Matrix stability and bifurcation analysis by a network-based approach.

作者信息

Zhao Zhenzhen, Tang Ruoyu, Wang Ruiqi

机构信息

Department of Mathematics, Shanghai University, Shanghai, 200444, China.

Newtouch Center for Mathematics of Shanghai University, Shanghai, 200444, China.

出版信息

Theory Biosci. 2023 Nov;142(4):401-410. doi: 10.1007/s12064-023-00405-0. Epub 2023 Sep 27.

Abstract

In this paper, we develop a network-based methodology to investigate the problems related to matrix stability and bifurcations in nonlinear dynamical systems. By matching a matrix with a network, i.e., interaction graph, we propose a new network-based matrix analysis method by proving a theorem about matrix determinant under which matrix stability can be considered in terms of feedback loops. Especially, the approach can tell us how a node, a path, or a feedback loop in the interaction graph affects matrix stability. In addition, the roles played by a node, a path, or a feedback loop in determining bifurcations in nonlinear dynamical systems can also be revealed. Therefore, the approach can help us to screen optimal node or node combinations. By perturbing them, unstable matrices can be stabilized more efficiently or bifurcations can be induced more easily to realize desired state transitions. To illustrate feasibility and efficiency of the approach, some simple matrices are used to show how single or combinatorial perturbations affect matrix stability and induce bifurcations. In addition, the main idea is also illustrated through a biological problem related to T cell development with three nodes: TCF-1, GATA3, and PU.1, which can be considered to be a three-variable nonlinear dynamical system. The approach is especially helpful in understanding crucial roles of single or molecule combinations in biomolecular networks. The approach presented here can be expected to analyze other biological networks related to cell fate transitions and systematic perturbation strategy selection.

摘要

在本文中,我们开发了一种基于网络的方法来研究非线性动力系统中与矩阵稳定性和分岔相关的问题。通过将矩阵与网络(即相互作用图)进行匹配,我们提出了一种新的基于网络的矩阵分析方法,证明了一个关于矩阵行列式的定理,据此可以从反馈回路的角度考虑矩阵稳定性。特别是,该方法可以告诉我们相互作用图中的一个节点、一条路径或一个反馈回路如何影响矩阵稳定性。此外,还可以揭示一个节点、一条路径或一个反馈回路在确定非线性动力系统分岔中所起的作用。因此,该方法可以帮助我们筛选出最优节点或节点组合。通过对它们进行扰动,可以更有效地稳定不稳定矩阵,或者更容易地诱导分岔以实现期望的状态转变。为了说明该方法的可行性和效率,我们使用了一些简单矩阵来展示单个或组合扰动如何影响矩阵稳定性并诱导分岔。此外,还通过一个与T细胞发育相关的生物学问题说明了主要思想,该问题涉及三个节点:TCF-1、GATA3和PU.1,可将其视为一个三变量非线性动力系统。该方法在理解生物分子网络中单个或分子组合的关键作用方面特别有帮助。预计本文提出的方法可用于分析与细胞命运转变相关的其他生物网络以及系统扰动策略选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验