Suppr超能文献

应用模式识别和计算机视觉工具改进生物样本中微塑料物品的形态分析

Application of Pattern Recognition and Computer Vision Tools to Improve the Morphological Analysis of Microplastic Items in Biological Samples.

作者信息

Astel Aleksander Maria, Piskuła Paulina

机构信息

Environmental Chemistry Research Unit, Institute of Geography, Pomeranian University in Słupsk, 22a Arciszewskiego Str., 76-200 Słupsk, Poland.

出版信息

Toxics. 2023 Sep 13;11(9):779. doi: 10.3390/toxics11090779.

Abstract

Since, in many routine analytical laboratories, a stereomicroscope coupled with a digital camera is not equipped with advanced software enabling automatic detection of features of observed objects, in the present study, a procedure of feature detection using open-source software was proposed and validated. Within the framework of applying microscopic expertise coupled with image analysis, a set of digital images of microplastic (MP) items identified in organs of fish was used to determine shape descriptors (such as length, width, item area, etc.). The edge points required to compute shape characteristics were set manually in digital images acquired by the camera coupled with a binocular, and respective values were computed via the use of built-in MotiConnect software. As an alternative, a new approach consisting of digital image thresholding, binarization, the use of connected-component labeling, and the computation of shape descriptors on a pixel level via using the functions available in an OpenCV library or self-written in C++ was proposed. Overall, 74.4% of the images were suitable for thresholding without any additional pretreatment. A significant correlation was obtained between the shape descriptors computed by the software and computed using the proposed approach. The range of correlation coefficients at a very high level of significance, according to the pair of correlated measures, was higher than 0.69. The length of fibers can be satisfactorily approximated using a value of half the length of the outer perimeter (r higher than 0.75). Compactness and circularity significantly differ for particles and fibers.

摘要

由于在许多常规分析实验室中,配备数码相机的体视显微镜未安装能够自动检测观察对象特征的先进软件,因此在本研究中,提出并验证了一种使用开源软件进行特征检测的程序。在应用微观专业知识与图像分析相结合的框架内,利用一组在鱼类器官中识别出的微塑料(MP)物品的数字图像来确定形状描述符(如长度、宽度、物品面积等)。通过与双目显微镜相连的相机采集的数字图像中,手动设置计算形状特征所需的边缘点,并通过使用内置的MotiConnect软件计算相应的值。作为一种替代方法,提出了一种新方法,该方法包括数字图像阈值处理、二值化、使用连通组件标记以及通过使用OpenCV库中可用的函数或用C++自行编写的函数在像素级别计算形状描述符。总体而言,74.4%的图像无需任何额外预处理即可进行阈值处理。软件计算的形状描述符与使用所提出方法计算的形状描述符之间存在显著相关性。根据相关测量对,在非常高的显著性水平下,相关系数范围高于0.69。使用外周长度的一半的值可以令人满意地近似纤维的长度(r高于0.75)。颗粒和纤维的紧凑度和圆形度存在显著差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a3/10537546/363f3c30422b/toxics-11-00779-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验