Harley-Troxell Meaghan E, Steiner Richard, Advincula Rigoberto C, Anderson David E, Dhar Madhu
Tissue Engineering and Regenerative Medicine, Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA.
Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA.
Polymers (Basel). 2023 Sep 7;15(18):3685. doi: 10.3390/polym15183685.
Neural injuries affect millions globally, significantly impacting their quality of life. The inability of these injuries to heal, limited ability to regenerate, and the lack of available treatments make regenerative medicine and tissue engineering a promising field of research for developing methods for nerve repair. This review evaluates the use of natural and synthetic polymers, and the fabrication methods applied that influence a cell's behavior. Methods include cross-linking hydrogels, incorporation of nanoparticles, and 3D printing with and without live cells. The endogenous cells within the injured area and any exogenous cells seeded on the polymer construct play a vital role in regulating healthy neural activity. This review evaluates the body's local and systemic reactions to the implanted materials. Although numerous variables are involved, many of these materials and methods have exhibited the potential to provide a biomaterial environment that promotes biocompatibility and the regeneration of a physical and functional nerve. Future studies may evaluate advanced methods for modifying material properties and characterizing the tissue-biomaterial interface for clinical applications.
神经损伤在全球范围内影响着数百万人,严重影响他们的生活质量。这些损伤无法愈合、再生能力有限以及缺乏有效的治疗方法,使得再生医学和组织工程成为开发神经修复方法的一个有前景的研究领域。这篇综述评估了天然和合成聚合物的使用,以及所应用的影响细胞行为的制造方法。方法包括交联水凝胶、掺入纳米颗粒以及有活细胞和无活细胞的3D打印。损伤区域内的内源性细胞以及接种在聚合物构建体上的任何外源性细胞在调节健康的神经活动中起着至关重要的作用。这篇综述评估了身体对植入材料的局部和全身反应。尽管涉及众多变量,但这些材料和方法中的许多已显示出提供促进生物相容性以及物理和功能性神经再生的生物材料环境的潜力。未来的研究可能会评估用于改变材料特性和表征组织 - 生物材料界面以用于临床应用的先进方法。