Falahkheirkhah Kianoush, Mukherjee Sudipta S, Gupta Sounak, Herrera-Hernandez Loren, McCarthy Michael R, Jimenez Rafael E, Cheville John C, Bhargava Rohit
Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois.
Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois.
Cancer Res Commun. 2023 Sep 18;3(9):1875-1887. doi: 10.1158/2767-9764.CRC-23-0226.
Histopathology has remained a cornerstone for biomedical tissue assessment for over a century, with a resource-intensive workflow involving biopsy or excision, gross examination, sampling, tissue processing to snap frozen or formalin-fixed paraffin-embedded blocks, sectioning, staining, optical imaging, and microscopic assessment. Emerging chemical imaging approaches, including stimulated Raman scattering (SRS) microscopy, can directly measure inherent molecular composition in tissue (thereby dispensing with the need for tissue processing, sectioning, and using dyes) and can use artificial intelligence (AI) algorithms to provide high-quality images. Here we show the integration of SRS microscopy in a pathology workflow to rapidly record chemical information from minimally processed fresh-frozen prostate tissue. Instead of using thin sections, we record data from intact thick tissues and use optical sectioning to generate images from multiple planes. We use a deep learning–based processing pipeline to generate virtual hematoxylin and eosin images. Next, we extend the computational method to generate archival-quality images in minutes, which are equivalent to those obtained from hours/days-long formalin-fixed, paraffin-embedded processing. We assessed the quality of images from the perspective of enabling pathologists to make decisions, demonstrating that the virtual stained image quality was diagnostically useful and the interpathologist agreement on prostate cancer grade was not impacted. Finally, because this method does not wash away lipids and small molecules, we assessed the utility of lipid chemical composition in determining grade. Together, the combination of chemical imaging and AI provides novel capabilities for rapid assessments in pathology by reducing the complexity and burden of current workflows.
Archival-quality (formalin-fixed paraffin-embedded), thin-section diagnostic images are obtained from thick-cut, fresh-frozen prostate tissues without dyes or stains to expedite cancer histopathology by combining SRS microscopy and machine learning.
一个多世纪以来,组织病理学一直是生物医学组织评估的基石,其工作流程资源密集,包括活检或切除、大体检查、取样、组织处理成速冻或福尔马林固定石蜡包埋块、切片、染色、光学成像和显微镜评估。新兴的化学成像方法,包括受激拉曼散射(SRS)显微镜,可以直接测量组织中的固有分子组成(从而无需进行组织处理、切片和使用染料),并且可以使用人工智能(AI)算法来提供高质量图像。在这里,我们展示了SRS显微镜在病理学工作流程中的整合,以快速记录来自最少处理的新鲜冷冻前列腺组织的化学信息。我们不是使用薄切片,而是从完整的厚组织中记录数据,并使用光学切片从多个平面生成图像。我们使用基于深度学习的处理管道来生成虚拟苏木精和伊红图像。接下来,我们扩展了计算方法,在几分钟内生成存档质量的图像,这些图像与通过长达数小时/数天的福尔马林固定、石蜡包埋处理获得的图像相当。我们从使病理学家能够做出决策的角度评估了图像质量,证明虚拟染色图像质量在诊断上是有用的,并且病理学家之间对前列腺癌分级的一致性没有受到影响。最后,由于这种方法不会冲走脂质和小分子,我们评估了脂质化学成分在确定分级方面的效用。总之,化学成像和人工智能的结合通过降低当前工作流程的复杂性和负担,为病理学中的快速评估提供了新的能力。
通过结合SRS显微镜和机器学习,从厚切片、新鲜冷冻的前列腺组织中获得存档质量(福尔马林固定石蜡包埋)的薄切片诊断图像,无需染料或染色,以加快癌症组织病理学诊断。