Xu Shuangwu, Chen Hongxia, Zhang Xinyu, Zhou Mengcheng, Zhou Hongming
School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China.
ACS Appl Mater Interfaces. 2023 Oct 11;15(40):47764-47778. doi: 10.1021/acsami.3c09876. Epub 2023 Sep 29.
Sodium-ion batteries (SIBs) have shown great potential as energy storage devices due to their low price and abundant sodium content. Among them, O3-type layered oxides are a promising cathode material for sodium-ion batteries; however, most of them suffer from slow kinetics and unfavorable structural stability, which seriously hinder their practical application. O3-NaNiFeMnO surface modification is performed by a simple wet chemical method of coating NaTi(PO) on the surface. The NASICON-type NaTi(PO) coating layer has a special three-dimensional channel, which facilitates the rapid migration of Na, and the NaTi(PO) coating layer also prevents direct contact between the electrode and the electrolyte, ensuring the stability of the interface. In addition, the NaTi(PO) coating layer induces part of the Ti doping into the transition metal layer of NaNiFeMnO, which increases the stability of the transition metal layer and reduces the resistance of Na diffusion. More importantly, the NaTi(PO) coating layer can suppress the O3-P3 phase transition and reduce the volume change of the materials throughout the charge/discharge process. Thus, the NaTi(PO) coating layer can effectively improve the electrochemical performance of the cathode materials. The NFM@NTP3 has a capacity retention of 86% (2.0-4.0 V vs Na/Na, 300 cycles) and 85% (2.0-4.2 V vs Na/Na, 100 cycles) at 1 and a discharge capacity of 107 mAh g (2.0-4.0 V vs Na/Na) and 125 mAh g (2.0-4.2 V vs Na/Na) at 10, respectively. Therefore, this surface modification strategy provides a simple and effective way to design and develop high-performance layered oxide cathode materials for sodium-ion batteries.
钠离子电池(SIBs)由于其价格低廉且钠含量丰富,作为储能设备已展现出巨大潜力。其中,O3型层状氧化物是一种有前景的钠离子电池正极材料;然而,它们中的大多数存在动力学缓慢和结构稳定性不佳的问题,这严重阻碍了其实际应用。通过在O3-NaNiFeMnO表面涂覆NaTi(PO)的简单湿化学方法进行表面改性。NASICON型NaTi(PO)涂层具有特殊的三维通道,这有利于Na的快速迁移,并且NaTi(PO)涂层还可防止电极与电解质直接接触,确保界面的稳定性。此外,NaTi(PO)涂层促使部分Ti掺杂到NaNiFeMnO的过渡金属层中,这增加了过渡金属层的稳定性并降低了Na扩散的阻力。更重要的是,NaTi(PO)涂层可抑制O3-P3相变并减少材料在整个充放电过程中的体积变化。因此,NaTi(PO)涂层可有效改善正极材料的电化学性能。NFM@NTP3在1C时容量保持率分别为86%(相对于Na/Na+,2.0 - 4.0 V,300次循环)和85%(相对于Na/Na+,2.0 - 4.2 V,100次循环),在10C时放电容量分别为107 mAh g-1(相对于Na/Na+,2.0 - 4.0 V)和125 mAh g-1(相对于Na/Na+,2.0 -