Suppr超能文献

人类大脑皮层中的早发性阿尔茨海默病病理学涉及短暂的细胞状态。

Early Alzheimer's disease pathology in human cortex involves transient cell states.

机构信息

Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.

Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Graduate Program in Biophysics and Harvard/MIT MD-PhD Program, Harvard University, Cambridge, MA 02139, USA.

出版信息

Cell. 2023 Sep 28;186(20):4438-4453.e23. doi: 10.1016/j.cell.2023.08.005.

Abstract

Cellular perturbations underlying Alzheimer's disease (AD) are primarily studied in human postmortem samples and model organisms. Here, we generated a single-nucleus atlas from a rare cohort of cortical biopsies from living individuals with varying degrees of AD pathology. We next performed a systematic cross-disease and cross-species integrative analysis to identify a set of cell states that are specific to early AD pathology. These changes-which we refer to as the early cortical amyloid response-were prominent in neurons, wherein we identified a transitional hyperactive state preceding the loss of excitatory neurons, which we confirmed by acute slice physiology on independent biopsy specimens. Microglia overexpressing neuroinflammatory-related processes also expanded as AD pathology increased. Finally, both oligodendrocytes and pyramidal neurons upregulated genes associated with β-amyloid production and processing during this early hyperactive phase. Our integrative analysis provides an organizing framework for targeting circuit dysfunction, neuroinflammation, and amyloid production early in AD pathogenesis.

摘要

阿尔茨海默病(AD)的细胞扰动主要在人类死后样本和模式生物中进行研究。在这里,我们从一组来自患有不同程度 AD 病理的活体个体的皮质活检中生成了一个单细胞核图谱。接下来,我们进行了系统的跨疾病和跨物种综合分析,以确定一组特定于早期 AD 病理的细胞状态。这些变化——我们称之为早期皮质淀粉样蛋白反应——在神经元中很明显,我们通过对独立活检标本的急性切片生理学确认了兴奋性神经元丧失之前的过渡性过度活跃状态。过度表达神经炎症相关过程的小胶质细胞也随着 AD 病理的增加而扩张。最后,少突胶质细胞和锥体神经元在这个早期过度活跃阶段上调了与β-淀粉样蛋白产生和加工相关的基因。我们的综合分析为靶向 AD 发病机制早期的回路功能障碍、神经炎症和淀粉样蛋白产生提供了一个组织框架。

相似文献

1
Early Alzheimer's disease pathology in human cortex involves transient cell states.
Cell. 2023 Sep 28;186(20):4438-4453.e23. doi: 10.1016/j.cell.2023.08.005.
3
Relationship between ubiquilin-1 and BACE1 in human Alzheimer's disease and APdE9 transgenic mouse brain and cell-based models.
Neurobiol Dis. 2016 Jan;85:187-205. doi: 10.1016/j.nbd.2015.11.005. Epub 2015 Nov 10.
5
The relationship between the morphological subtypes of microglia and Alzheimer's disease neuropathology.
Brain Pathol. 2019 Nov;29(6):726-740. doi: 10.1111/bpa.12717. Epub 2019 Mar 22.
6
Early-life stress lastingly alters the neuroinflammatory response to amyloid pathology in an Alzheimer's disease mouse model.
Brain Behav Immun. 2017 Jul;63:160-175. doi: 10.1016/j.bbi.2016.12.023. Epub 2016 Dec 25.
8
Distinct amyloid-β and tau-associated microglia profiles in Alzheimer's disease.
Acta Neuropathol. 2021 May;141(5):681-696. doi: 10.1007/s00401-021-02263-w. Epub 2021 Feb 20.
9
Neuronal amyloid-β accumulation within cholinergic basal forebrain in ageing and Alzheimer's disease.
Brain. 2015 Jun;138(Pt 6):1722-37. doi: 10.1093/brain/awv024. Epub 2015 Mar 1.
10
APOE and TREM2 regulate amyloid-responsive microglia in Alzheimer's disease.
Acta Neuropathol. 2020 Oct;140(4):477-493. doi: 10.1007/s00401-020-02200-3. Epub 2020 Aug 25.

引用本文的文献

2
Lithium deficiency and the onset of Alzheimer's disease.
Nature. 2025 Aug 6. doi: 10.1038/s41586-025-09335-x.
4
Disruption of hnRNP A2-mediated RNA dynamics by amyloid-β drives MBP increase in Alzheimer's disease.
Cell Mol Life Sci. 2025 Aug 2;82(1):298. doi: 10.1007/s00018-025-05823-5.
5
Dysregulated calcium signaling in the aged primate association cortices: vulnerability to Alzheimer's disease neuropathology.
Front Aging Neurosci. 2025 Jul 15;17:1610350. doi: 10.3389/fnagi.2025.1610350. eCollection 2025.
9
Cytokine-induced reprogramming of human macrophages toward Alzheimer's disease-relevant molecular and cellular phenotypes in vitro.
Cell Rep. 2025 Jul 22;44(7):115909. doi: 10.1016/j.celrep.2025.115909. Epub 2025 Jun 25.
10
Mechanism of cytarabine-induced neurotoxicity.
Nature. 2025 Jun 25. doi: 10.1038/s41586-025-09210-9.

本文引用的文献

1
Unsupervised removal of systematic background noise from droplet-based single-cell experiments using CellBender.
Nat Methods. 2023 Sep;20(9):1323-1335. doi: 10.1038/s41592-023-01943-7. Epub 2023 Aug 7.
3
Astrocyte calcium dysfunction causes early network hyperactivity in Alzheimer's disease.
Cell Rep. 2022 Aug 23;40(8):111280. doi: 10.1016/j.celrep.2022.111280.
4
Molecular signatures underlying neurofibrillary tangle susceptibility in Alzheimer's disease.
Neuron. 2022 Sep 21;110(18):2929-2948.e8. doi: 10.1016/j.neuron.2022.06.021. Epub 2022 Jul 25.
6
7
New insights into the genetic etiology of Alzheimer's disease and related dementias.
Nat Genet. 2022 Apr;54(4):412-436. doi: 10.1038/s41588-022-01024-z. Epub 2022 Apr 4.
8
Dissection of artifactual and confounding glial signatures by single-cell sequencing of mouse and human brain.
Nat Neurosci. 2022 Mar;25(3):306-316. doi: 10.1038/s41593-022-01022-8. Epub 2022 Mar 8.
9
Genetic analysis of the human microglial transcriptome across brain regions, aging and disease pathologies.
Nat Genet. 2022 Jan;54(1):4-17. doi: 10.1038/s41588-021-00976-y. Epub 2022 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验