Weiss Adam M, Lopez Marcos A, Rawe Benjamin W, Manna Saikat, Chen Qing, Mulder Elizabeth J, Rowan Stuart J, Esser-Kahn Aaron P
Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Ave., Chicago, Illinois 60637, United States.
Department of Chemistry, University of Chicago, 5735 S Ellis Ave., Chicago, Illinois 60637, United States.
Macromolecules. 2023 Sep 8;56(18):7286-7299. doi: 10.1021/acs.macromol.3c01223. eCollection 2023 Sep 26.
Cationic polymers are widely used materials in diverse biotechnologies. Subtle variations in these polymers' properties can change them from exceptional delivery agents to toxic inflammatory hazards. Conventional screening strategies optimize for function in a specific application rather than observing how underlying polymer-cell interactions emerge from polymers' properties. An alternative approach is to map basic underlying responses, such as immunogenicity or toxicity, as a function of basic physicochemical parameters to inform the design of materials for a breadth of applications. To demonstrate the potential of this approach, we synthesized 107 polymers varied in charge, hydrophobicity, and molecular weight. We then screened this library for cytotoxic behavior and immunogenic responses to map how these physicochemical properties inform polymer-cell interactions. We identify three compositional regions of interest and use confocal microscopy to uncover the mechanisms behind the observed responses. Finally, immunogenic activity is confirmed . Highly cationic polymers disrupted the cellular plasma membrane to induce a toxic phenotype, while high molecular weight, hydrophobic polymers were uptaken by active transport to induce NLRP3 inflammasome activation, an immunogenic phenotype. Tertiary amine- and triethylene glycol-containing polymers did not invoke immunogenic or toxic responses. The framework described herein allows for the systematic characterization of new cationic materials with different physicochemical properties for applications ranging from drug and gene delivery to antimicrobial coatings and tissue scaffolds.
阳离子聚合物是广泛应用于各种生物技术的材料。这些聚合物性质的细微变化可使其从出色的递送剂转变为有毒的炎症危害物。传统的筛选策略针对特定应用中的功能进行优化,而非观察聚合物与细胞之间的相互作用如何由聚合物的性质产生。另一种方法是将诸如免疫原性或毒性等基本潜在反应绘制为基本物理化学参数的函数,以为广泛应用的材料设计提供信息。为了证明这种方法的潜力,我们合成了107种电荷、疏水性和分子量各不相同的聚合物。然后,我们对该文库进行细胞毒性行为和免疫原性反应筛选,以绘制这些物理化学性质如何影响聚合物与细胞的相互作用。我们确定了三个感兴趣的组成区域,并使用共聚焦显微镜揭示观察到的反应背后的机制。最后,免疫原活性得到证实。高度阳离子化的聚合物破坏细胞质膜以诱导毒性表型,而高分子量、疏水性聚合物通过主动转运被摄取以诱导NLRP3炎性小体激活,这是一种免疫原性表型。含叔胺和三甘醇的聚合物未引发免疫原性或毒性反应。本文所述的框架允许对具有不同物理化学性质的新型阳离子材料进行系统表征,这些材料的应用范围从药物和基因递送、抗菌涂层到组织支架。