Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States.
Engineering Medicine Program, Texas A&M University, Houston, TX, United States.
Front Immunol. 2023 Sep 7;14:1228873. doi: 10.3389/fimmu.2023.1228873. eCollection 2023.
T cell receptor (TCR)-peptide-major histocompatibility complex (pMHC) interactions play a vital role in initiating immune responses against pathogens, and the specificity of TCRpMHC interactions is crucial for developing optimized therapeutic strategies. The advent of high-throughput immunological and structural evaluation of TCR and pMHC has provided an abundance of data for computational approaches that aim to predict favorable TCR-pMHC interactions. Current models are constructed using information on protein sequence, structures, or a combination of both, and utilize a variety of statistical learning-based approaches for identifying the rules governing specificity. This review examines the current theoretical, computational, and deep learning approaches for identifying TCR-pMHC recognition pairs, placing emphasis on each method's mathematical approach, predictive performance, and limitations.
T 细胞受体(TCR)-肽-主要组织相容性复合物(pMHC)相互作用在启动针对病原体的免疫反应中起着至关重要的作用,而 TCR-pMHC 相互作用的特异性对于开发优化的治疗策略至关重要。高通量免疫和 TCR 和 pMHC 的结构评估的出现为旨在预测有利的 TCR-pMHC 相互作用的计算方法提供了大量数据。当前的模型使用关于蛋白质序列、结构或两者组合的信息构建,并利用各种基于统计学习的方法来识别控制特异性的规则。本综述检查了用于识别 TCR-pMHC 识别对的当前理论、计算和深度学习方法,重点介绍每种方法的数学方法、预测性能和局限性。