Suppr超能文献

准确的神经酰胺定量分析,减少非线性模型的碎片化偏差。

Accurate Sphingolipid Quantification Reducing Fragmentation Bias by Nonlinear Models.

机构信息

Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria.

Vienna Doctoral School in Chemistry, University of Vienna, 1090 Vienna, Austria.

出版信息

Anal Chem. 2023 Oct 17;95(41):15227-15235. doi: 10.1021/acs.analchem.3c02445. Epub 2023 Oct 2.

Abstract

Quantitative sphingolipid analysis is crucial for understanding the roles of these bioactive molecules in various physiological and pathological contexts. Molecular sphingolipid species are typically quantified using sphingoid base-derived fragments relative to a class-specific internal standard. However, the commonly employed "one standard per class" strategy fails to account for fragmentation differences presented by the structural diversity of sphingolipids. To address this limitation, we developed a novel approach for quantitative sphingolipid analysis. This approach utilizes fragmentation models to correct for structural differences and thus overcomes the limitations associated with using a limited number of standards for quantification. Importantly, our method is independent of the internal standard, instrumental setup, and collision energy. Furthermore, we integrated this method into a user-friendly KNIME workflow. The validation results illustrate the effectiveness of our approach in accurately quantifying ceramide subclasses from various biological matrices. This breakthrough opens up new avenues for exploring sphingolipid metabolism and gaining insights into its implications.

摘要

定量分析鞘脂对于理解这些生物活性分子在各种生理和病理环境中的作用至关重要。通常使用鞘氨醇碱基衍生片段相对于特定于类别的内部标准来定量测定分子鞘脂种类。然而,常用的“每个类别一个标准”策略未能解释鞘脂结构多样性所带来的片段化差异。为了解决这个限制,我们开发了一种新的定量鞘脂分析方法。该方法利用片段化模型来校正结构差异,从而克服了使用有限数量的标准进行定量的局限性。重要的是,我们的方法独立于内部标准、仪器设置和碰撞能量。此外,我们将该方法集成到了一个用户友好的 KNIME 工作流程中。验证结果说明了我们的方法在准确定量分析来自各种生物基质的神经酰胺亚类方面的有效性。这一突破为探索鞘脂代谢并深入了解其影响开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67d5/10585660/e15bec588c8a/ac3c02445_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验