Zeng Zezhu, Wodaczek Felix, Liu Keyang, Stein Frederick, Hutter Jürg, Chen Ji, Cheng Bingqing
The Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria.
School of Physics, Peking University, Beijing, 100871, P. R. China.
Nat Commun. 2023 Oct 2;14(1):6131. doi: 10.1038/s41467-023-41865-8.
Water adsorption and dissociation processes on pristine low-index TiO interfaces are important but poorly understood outside the well-studied anatase (101) and rutile (110). To understand these, we construct three sets of machine learning potentials that are simultaneously applicable to various TiO surfaces, based on three density-functional-theory approximations. Here we show the water dissociation free energies on seven pristine TiO surfaces, and predict that anatase (100), anatase (110), rutile (001), and rutile (011) favor water dissociation, anatase (101) and rutile (100) have mostly molecular adsorption, while the simulations of rutile (110) sensitively depend on the slab thickness and molecular adsorption is preferred with thick slabs. Moreover, using an automated algorithm, we reveal that these surfaces follow different types of atomistic mechanisms for proton transfer and water dissociation: one-step, two-step, or both. These mechanisms can be rationalized based on the arrangements of water molecules on the different surfaces. Our finding thus demonstrates that the different pristine TiO surfaces react with water in distinct ways, and cannot be represented using just the low-energy anatase (101) and rutile (110) surfaces.
在未被充分研究的锐钛矿(101)和金红石(110)之外,原始低指数TiO界面上的水吸附和解离过程很重要,但人们对此了解甚少。为了理解这些过程,我们基于三种密度泛函理论近似构建了三组适用于各种TiO表面的机器学习势。在此,我们展示了七个原始TiO表面上的水解离自由能,并预测锐钛矿(100)、锐钛矿(110)、金红石(001)和金红石(011)有利于水解离,锐钛矿(101)和金红石(100)主要是分子吸附,而金红石(110)的模拟结果敏感地取决于平板厚度,厚平板时更倾向于分子吸附。此外,我们使用一种自动算法揭示,这些表面遵循不同类型的质子转移和水解离原子机制:一步、两步或两者皆有。这些机制可以根据不同表面上水分子的排列进行合理解释。因此,我们的发现表明,不同的原始TiO表面与水的反应方式不同,不能仅用低能量的锐钛矿(101)和金红石(110)表面来表示。