Suppr超能文献

2型糖尿病患者基础胰岛素调整后空腹血糖变化的个性化预测:一项概念验证研究。

Personalized Prediction of Change in Fasting Blood Glucose Following Basal Insulin Adjustment in People With Type 2 Diabetes: A Proof-of-Concept Study.

作者信息

Thomsen Camilla Heisel Nyholm, Kronborg Thomas, Hangaard Stine, Vestergaard Peter, Hejlesen Ole, Jensen Morten Hasselstrøm

机构信息

Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.

Steno Diabetes Center North Denmark, Aalborg, Denmark.

出版信息

J Diabetes Sci Technol. 2025 May;19(3):769-777. doi: 10.1177/19322968231201400. Epub 2023 Oct 2.

Abstract

AIMS

For people with type 2 diabetes treated with basal insulin, suboptimal glycemic control due to clinical inertia is a common issue. Determining the optimal basal insulin dose can be difficult, as it varies between individuals. Thus, insulin titration can be slow and cautious which may lead to treatment fatigue and non-adherence. A model that predicts changes in fasting blood glucose (FBG) after adjusting basal insulin dose may lead to more optimal titration, reducing some of these challenges.

OBJECTIVE

To predict the change in FBG following adjustment of basal insulin in people with type 2 diabetes using a machine learning framework.

METHODS

A multiple linear regression model was developed based on 786 adults with type 2 diabetes. Data were divided into training (80%) and testing (20%) sets using a ranking approach. Forward feature selection and fivefold cross-validation were used to select features.

RESULTS

Participants had a mean age of approximately 59 years, a mean duration of diabetes of 12 years, and a mean HbA at screening of 65 mmol/mol (8.1%). Chosen features were FBG at week 2, basal insulin dose adjustment from week 2 to 7, trial site, hemoglobin level, and alkaline phosphatase level. The model achieved a relative absolute error of 0.67, a Pearson correlation coefficient of 0.74, and a coefficient of determination of 0.55.

CONCLUSIONS

A model using FBG, insulin doses, and blood samples can predict a five-week change in FBG after adjusting the basal insulin dose in people with type 2 diabetes. Implementation of such a model can potentially help optimize titration and improve glycemic control.

摘要

目的

对于接受基础胰岛素治疗的2型糖尿病患者,因临床惰性导致血糖控制不佳是一个常见问题。确定最佳基础胰岛素剂量可能很困难,因为个体之间存在差异。因此,胰岛素滴定可能缓慢且谨慎,这可能导致治疗疲劳和不依从。一个能够预测调整基础胰岛素剂量后空腹血糖(FBG)变化的模型可能会带来更优化的滴定,减少其中一些挑战。

目标

使用机器学习框架预测2型糖尿病患者调整基础胰岛素后FBG的变化。

方法

基于786名成年2型糖尿病患者开发了一个多元线性回归模型。使用排序方法将数据分为训练集(80%)和测试集(20%)。采用前向特征选择和五重交叉验证来选择特征。

结果

参与者的平均年龄约为59岁,糖尿病平均病程为12年,筛查时平均糖化血红蛋白为65 mmol/mol(8.1%)。所选特征为第2周的FBG、第2周至第7周的基础胰岛素剂量调整、试验地点、血红蛋白水平和碱性磷酸酶水平。该模型的相对绝对误差为0.67,皮尔逊相关系数为(0.74),决定系数为(0.55)。

结论

一个使用FBG、胰岛素剂量和血液样本的模型可以预测2型糖尿病患者调整基础胰岛素剂量后FBG的五周变化。实施这样一个模型可能有助于优化滴定并改善血糖控制。

相似文献

本文引用的文献

9
Feasibility of a New Approach to Initiate Insulin in Type 2 Diabetes.新方法在 2 型糖尿病起始胰岛素治疗中的可行性。
J Diabetes Sci Technol. 2021 Mar;15(2):339-345. doi: 10.1177/1932296819900240. Epub 2020 Jan 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验