Suppr超能文献

多变量定量超声参数用于评估肝脂肪变性。

Multivariable Quantitative US Parameters for Assessing Hepatic Steatosis.

机构信息

From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.).

出版信息

Radiology. 2023 Oct;309(1):e230341. doi: 10.1148/radiol.230341.

Abstract

Background Because of the global increase in the incidence of nonalcoholic fatty liver disease, the development of noninvasive, widely available, and highly accurate methods for assessing hepatic steatosis is necessary. Purpose To evaluate the performance of models with different combinations of quantitative US parameters for their ability to predict at least 5% steatosis in patients with chronic liver disease (CLD) as defined using MRI proton density fat fraction (PDFF). Materials and Methods Patients with CLD were enrolled in this prospective multicenter study between February 2020 and April 2021. Integrated backscatter coefficient (IBSC), signal-to-noise ratio (SNR), and US-guided attenuation parameter (UGAP) were measured in all participants. Participant MRI PDFF value was used to define at least 5% steatosis. Four models based on different combinations of US parameters were created: model 1 (UGAP alone), model 2 (UGAP with IBSC), model 3 (UGAP with SNR), and model 4 (UGAP with IBSC and SNR). Diagnostic performance of all models was assessed using area under the receiver operating characteristic curve (AUC). The model was internally validated using 1000 bootstrap samples. Results A total of 582 participants were included in this study (median age, 64 years; IQR, 52-72 years; 274 female participants). There were 364 participants in the steatosis group and 218 in the nonsteatosis group. The AUC values for steatosis diagnosis in models 1-4 were 0.92, 0.93, 0.95, and 0.96, respectively. The C-indexes of models adjusted by the bootstrap method were 0.92, 0.93, 0.95, and 0.96, respectively. Compared with other models, models 3 and 4 demonstrated improved discrimination of at least 5% steatosis ( < .01). Conclusion A model built using the quantitative US parameters UGAP, IBSC, and SNR could accurately discriminate at least 5% steatosis in patients with CLD. © RSNA, 2023 See also the editorial by Han in this issue.

摘要

背景 由于非酒精性脂肪性肝病在全球的发病率不断增加,因此需要开发出非侵入性、广泛应用且高度准确的方法来评估肝脂肪变性。 目的 评估不同定量超声参数组合模型预测磁共振质子密度脂肪分数(PDFF)定义的慢性肝病(CLD)患者至少 5%脂肪变性的能力。 材料与方法 本前瞻性多中心研究于 2020 年 2 月至 2021 年 4 月纳入 CLD 患者。所有参与者均测量反向散射积分系数(IBSC)、信噪比(SNR)和超声衰减参数(UGAP)。根据参与者的 MRI PDFF 值定义至少 5%的脂肪变性。根据不同的超声参数组合创建了 4 种模型:模型 1(仅 UGAP)、模型 2(UGAP 联合 IBSC)、模型 3(UGAP 联合 SNR)和模型 4(UGAP 联合 IBSC 和 SNR)。使用受试者工作特征曲线下面积(AUC)评估所有模型的诊断性能。通过 1000 次自举样本对内进行模型验证。 结果 本研究共纳入 582 例患者(中位年龄,64 岁;四分位距,52-72 岁;274 例女性)。其中 364 例为脂肪变性组,218 例为非脂肪变性组。模型 1-4 用于诊断脂肪变性的 AUC 值分别为 0.92、0.93、0.95 和 0.96。通过自举法调整后的模型 C 指数分别为 0.92、0.93、0.95 和 0.96。与其他模型相比,模型 3 和 4 对至少 5%的脂肪变性具有更好的鉴别能力(<.01)。 结论 使用 UGAP、IBSC 和 SNR 定量超声参数构建的模型可准确鉴别 CLD 患者的至少 5%脂肪变性。 ©2023 RSNA,参见本期社论

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验