Suppr超能文献

一种理解骨关节炎性膝关节疼痛的算法方法。

An Algorithmic Approach to Understanding Osteoarthritic Knee Pain.

作者信息

Hill Brandon G, Byrum Travis, Zhou Anthony, Schilling Peter L

机构信息

Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire.

The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.

出版信息

JB JS Open Access. 2023 Oct 3;8(4). doi: 10.2106/JBJS.OA.23.00039. eCollection 2023 Oct-Dec.

Abstract

BACKGROUND

Osteoarthritic knee pain is a complex phenomenon, and multiple factors, both within the knee and external to it, can contribute to how the patient perceives pain. We sought to determine how well a deep neural network could predict osteoarthritic knee pain and other symptoms solely from a single radiograph view.

METHODS

We used data from the Osteoarthritis Initiative, a 10-year observational study of patients with knee osteoarthritis. We paired >50,000 weight-bearing, posteroanterior knee radiographs with corresponding Knee Injury and Osteoarthritis Outcome Score (KOOS) pain, symptoms, and activities of daily living subscores and used them to train a series of deep learning models to predict those scores solely from raw radiographic input. We created regression models for specific score predictions and classification models to predict whether the modeled KOOS subscore exceeded a range of thresholds.

RESULTS

The root-mean-square errors were 15.7 for KOOS pain, 13.1 for KOOS symptoms, and 14.2 for KOOS activities of daily living. Modeling was performed to predict whether pain was above or below given pain thresholds, and was able to predict extreme pain (KOOS pain < 40) with an area under the curve (AUC) of 0.78. Notably, the system was also able to correctly predict numerous cases where the Kellgren-Lawrence (KL) grade assigned by the radiologist was 0 but patient pain was high, and cases where the KL grade was 4 but patient pain was low.

CONCLUSIONS

A deep neural network can be trained to predict the osteoarthritic knee pain that a patient experienced and other symptoms with reasonable accuracy from a single posteroanterior view of the knee, even using low-resolution images. The system can predict pain and dysfunction that the traditional KL grade does not capture. Deep learning applied to raw imaging inputs holds promise for disentangling sources of pain within the knee from aggravating factors external to the knee.

LEVEL OF EVIDENCE

Diagnostic Level III. See Instructions for Authors for a complete description of levels of evidence.

摘要

背景

骨关节炎性膝关节疼痛是一种复杂的现象,膝关节内外的多种因素均可影响患者对疼痛的感知。我们试图确定深度神经网络仅从单张X线片视图预测骨关节炎性膝关节疼痛及其他症状的能力。

方法

我们使用了骨关节炎倡议组织的数据,这是一项对膝关节骨关节炎患者进行的为期10年的观察性研究。我们将超过50000张负重后前位膝关节X线片与相应的膝关节损伤和骨关节炎结局评分(KOOS)疼痛、症状及日常生活活动亚评分进行配对,并使用它们训练一系列深度学习模型,以仅从原始X线影像输入预测这些评分。我们创建了用于特定评分预测的回归模型和用于预测建模的KOOS亚评分是否超过一系列阈值的分类模型。

结果

KOOS疼痛的均方根误差为15.7,KOOS症状为13.1,KOOS日常生活活动为14.2。进行建模以预测疼痛是高于还是低于给定的疼痛阈值,并且能够以曲线下面积(AUC)为0.78预测极度疼痛(KOOS疼痛<40)。值得注意的是,该系统还能够正确预测许多病例,其中放射科医生指定的凯尔格伦-劳伦斯(KL)分级为0但患者疼痛程度高的情况,以及KL分级为4但患者疼痛程度低的情况。

结论

即使使用低分辨率图像,也可以训练深度神经网络从膝关节的单张后前位视图以合理的准确度预测患者经历的骨关节炎性膝关节疼痛及其他症状。该系统可以预测传统KL分级未捕捉到的疼痛和功能障碍。将深度学习应用于原始影像输入有望区分膝关节内的疼痛来源与膝关节外的加重因素。

证据水平

诊断性III级。有关证据水平的完整描述,请参阅作者指南。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b71/10545400/865bd63263d7/jbjsoa-8-e23.00039-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验