Vinzón Sabrina E, Lopez María V, Cafferata Eduardo G A, Soto Ariadna S, Berguer Paula M, Vazquez Luciana, Nusblat Leonora, Pontoriero Andrea V, Belotti Eduardo M, Salvetti Natalia R, Viale Diego L, Vilardo Ariel E, Avaro Martin M, Benedetti Estefanía, Russo Mara L, Dattero María E, Carobene Mauricio, Sánchez-Lamas Maximiliano, Afonso Jimena, Heitrich Mauro, Cristófalo Alejandro E, Otero Lisandro H, Baumeister Elsa G, Ortega Hugo H, Edelstein Alexis, Podhajcer Osvaldo L
Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina.
Laboratorio de Microbiología e Inmunología Molecular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina.
NPJ Vaccines. 2023 Oct 4;8(1):149. doi: 10.1038/s41541-023-00737-4.
COVID-19 vaccines were originally designed based on the ancestral Spike protein, but immune escape of emergent Variants of Concern (VOC) jeopardized their efficacy, warranting variant-proof vaccines. Here, we used preclinical rodent models to establish the cross-protective and cross-neutralizing capacity of adenoviral-vectored vaccines expressing VOC-matched Spike. CoroVaxG.3-D.FR, matched to Delta Plus Spike, displayed the highest levels of nAb to the matched VOC and mismatched variants. Cross-protection against viral infection in aged K18-hACE2 mice showed dramatic differences among the different vaccines. While Delta-targeted vaccines fully protected mice from a challenge with Gamma, a Gamma-based vaccine offered only partial protection to Delta challenge. Administration of CorovaxG.3-D.FR in a prime/boost regimen showed that a booster was able to increase the neutralizing capacity of the sera against all variants and fully protect aged K18-hACE2 mice against Omicron BA.1, as a BA.1-targeted vaccine did. The neutralizing capacity of the sera diminished in all cases against Omicron BA.2 and BA.5. Altogether, the data demonstrate that a booster with a vaccine based on an antigenically distant variant, such as Delta or BA.1, has the potential to protect from a wider range of SARS-CoV-2 lineages, although careful surveillance of breakthrough infections will help to evaluate combination vaccines targeting antigenically divergent variants yet to emerge.
新冠病毒疫苗最初是根据原始刺突蛋白设计的,但令人担忧的新型变异株(VOC)的免疫逃逸危及了它们的效力,因此需要研发针对变异株的疫苗。在这里,我们使用临床前啮齿动物模型来确定表达与VOC匹配的刺突蛋白的腺病毒载体疫苗的交叉保护和交叉中和能力。与德尔塔Plus刺突蛋白匹配的CoroVaxG.3-D.FR对匹配的VOC和不匹配的变异株显示出最高水平的中和抗体。在老年K18-hACE2小鼠中,不同疫苗对病毒感染的交叉保护显示出显著差异。虽然针对德尔塔的疫苗能完全保护小鼠免受伽马毒株的攻击,但基于伽马毒株的疫苗对德尔塔毒株的攻击仅提供部分保护。以初免/加强免疫方案接种CoroVaxG.3-D.FR表明,加强免疫能够提高血清对所有变异株的中和能力,并像针对BA.1的疫苗一样,完全保护老年K18-hACE2小鼠免受奥密克戎BA.1毒株的感染。在所有情况下,血清对奥密克戎BA.2和BA.5毒株的中和能力都会下降。总体而言,数据表明,用基于抗原性差异较大的变异株(如德尔塔或BA.1)的疫苗进行加强免疫,有可能保护机体免受更广泛的新冠病毒谱系的感染,不过对突破性感染进行仔细监测将有助于评估针对尚未出现的抗原性不同变异株的联合疫苗。