Suppr超能文献

组织蛋白酶 W 下调与胰腺癌预后不良相关。

Down regulation of Cathepsin W is associated with poor prognosis in pancreatic cancer.

机构信息

Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.

Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.

出版信息

Sci Rep. 2023 Oct 4;13(1):16678. doi: 10.1038/s41598-023-42928-y.

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is associated with a very poor prognosis. Therefore, there has been a focus on identifying new biomarkers for its early diagnosis and the prediction of patient survival. Genome-wide RNA and microRNA sequencing, bioinformatics and Machine Learning approaches to identify differentially expressed genes (DEGs), followed by validation in an additional cohort of PDAC patients has been undertaken. To identify DEGs, genome RNA sequencing and clinical data from pancreatic cancer patients were extracted from The Cancer Genome Atlas Database (TCGA). We used Kaplan-Meier analysis of survival curves was used to assess prognostic biomarkers. Ensemble learning, Random Forest (RF), Max Voting, Adaboost, Gradient boosting machines (GBM), and Extreme Gradient Boosting (XGB) techniques were used, and Gradient boosting machines (GBM) were selected with 100% accuracy for analysis. Moreover, protein-protein interaction (PPI), molecular pathways, concomitant expression of DEGs, and correlations between DEGs and clinical data were analyzed. We have evaluated candidate genes, miRNAs, and a combination of these obtained from machine learning algorithms and survival analysis. The results of Machine learning identified 23 genes with negative regulation, five genes with positive regulation, seven microRNAs with negative regulation, and 20 microRNAs with positive regulation in PDAC. Key genes BMF, FRMD4A, ADAP2, PPP1R17, and CACNG3 had the highest coefficient in the advanced stages of the disease. In addition, the survival analysis showed decreased expression of hsa.miR.642a, hsa.mir.363, CD22, BTNL9, and CTSW and overexpression of hsa.miR.153.1, hsa.miR.539, hsa.miR.412 reduced survival rate. CTSW was identified as a novel genetic marker and this was validated using RT-PCR. Machine learning algorithms may be used to Identify key dysregulated genes/miRNAs involved in the disease pathogenesis can be used to detect patients in earlier stages. Our data also demonstrated the prognostic and diagnostic value of CTSW in PDAC.

摘要

胰腺导管腺癌(PDAC)预后非常差。因此,人们一直致力于寻找新的生物标志物,用于其早期诊断和预测患者的生存情况。我们进行了全基因组 RNA 和 microRNA 测序、生物信息学和机器学习方法来识别差异表达基因(DEGs),然后在另外一组 PDAC 患者中进行验证。为了识别 DEGs,从癌症基因组图谱数据库(TCGA)中提取了胰腺癌细胞的基因组 RNA 测序和临床数据。我们使用生存曲线的 Kaplan-Meier 分析来评估预后生物标志物。使用集成学习、随机森林(RF)、最大投票、Adaboost、梯度提升机(GBM)和极端梯度提升(XGB)技术,并且使用 GBM 以 100%的准确率进行分析。此外,还分析了蛋白质-蛋白质相互作用(PPI)、分子途径、DEGs 的伴随表达以及 DEGs 与临床数据之间的相关性。我们评估了来自机器学习算法和生存分析的候选基因、miRNAs 及其组合。机器学习的结果确定了 23 个具有负调控作用的基因、5 个具有正调控作用的基因、7 个具有负调控作用的 microRNAs 和 20 个具有正调控作用的 microRNAs 在 PDAC 中。关键基因 BMF、FRMD4A、ADAP2、PPP1R17 和 CACNG3 在疾病的晚期阶段具有最高的系数。此外,生存分析显示 hsa.miR.642a、hsa.mir.363、CD22、BTNL9 和 CTSW 的表达降低,hsa.miR.153.1、hsa.miR.539、hsa.miR.412 的表达升高会降低生存率。CTSW 被确定为一种新的遗传标志物,并且使用 RT-PCR 进行了验证。机器学习算法可用于识别疾病发病机制中涉及的关键失调基因/miRNAs,可用于更早阶段的患者检测。我们的数据还证明了 CTSW 在 PDAC 中的预后和诊断价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/571b/10551021/5a5cd6226693/41598_2023_42928_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验