Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazak, Aichii, 444-8787 Japan.
Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan.
Plant Cell Physiol. 2023 Dec 6;64(11):1343-1355. doi: 10.1093/pcp/pcad117.
Characterizing phenotypes is a fundamental aspect of biological sciences, although it can be challenging due to various factors. For instance, the liverwort Marchantia polymorpha is a model system for plant biology and exhibits morphological variability, making it difficult to identify and quantify distinct phenotypic features using objective measures. To address this issue, we utilized a deep-learning-based image classifier that can handle plant images directly without manual extraction of phenotypic features and analyzed pictures of M. polymorpha. This dioicous plant species exhibits morphological differences between male and female wild accessions at an early stage of gemmaling growth, although it remains elusive whether the differences are attributable to sex chromosomes. To isolate the effects of sex chromosomes from autosomal polymorphisms, we established a male and female set of recombinant inbred lines (RILs) from a set of male and female wild accessions. We then trained deep learning models to classify the sexes of the RILs and the wild accessions. Our results showed that the trained classifiers accurately classified male and female gemmalings of wild accessions in the first week of growth, confirming the intuition of researchers in a reproducible and objective manner. In contrast, the RILs were less distinguishable, indicating that the differences between the parental wild accessions arose from autosomal variations. Furthermore, we validated our trained models by an 'eXplainable AI' technique that highlights image regions relevant to the classification. Our findings demonstrate that the classifier-based approach provides a powerful tool for analyzing plant species that lack standardized phenotyping metrics.
表型特征的描述是生物科学的一个基本方面,但由于各种因素,这可能具有挑战性。例如,地钱是植物生物学的一个模式系统,它表现出形态变异性,使得使用客观测量方法难以识别和量化不同的表型特征。为了解决这个问题,我们使用了一种基于深度学习的图像分类器,它可以直接处理植物图像,而无需手动提取表型特征,并分析地钱的图片。这种雌雄异株的植物在其配子体生长的早期阶段,雄性和雌性野生品系之间表现出形态差异,尽管尚不清楚这些差异是否归因于性染色体。为了将性染色体的影响与常染色体多态性分离,我们从一组雄性和雌性野生品系中建立了一组雄性和雌性重组自交系 (RIL)。然后,我们训练深度学习模型来对 RIL 和野生品系的性别进行分类。我们的结果表明,训练有素的分类器能够准确地对生长第一周的野生品系雌雄配子体进行分类,以可重复和客观的方式证实了研究人员的直觉。相比之下,RIL 则不太容易区分,这表明亲本野生品系之间的差异源于常染色体的变异。此外,我们还通过一种“可解释的人工智能”技术来验证我们训练有素的模型,该技术突出了与分类相关的图像区域。我们的研究结果表明,基于分类器的方法为分析缺乏标准化表型度量的植物物种提供了一种强大的工具。