Department of Radiology, University Hospital, LMU Munich, Munich, Germany.
German Cancer Research Center (DKFZ), Partner site Munich, DKTK German Cancer Consortium, Munich, Germany.
Nuklearmedizin. 2023 Oct;62(5):296-305. doi: 10.1055/a-2157-6810. Epub 2023 Oct 6.
Artificial intelligence (AI) applications have become increasingly relevant across a broad spectrum of settings in medical imaging. Due to the large amount of imaging data that is generated in oncological hybrid imaging, AI applications are desirable for lesion detection and characterization in primary staging, therapy monitoring, and recurrence detection. Given the rapid developments in machine learning (ML) and deep learning (DL) methods, the role of AI will have significant impact on the imaging workflow and will eventually improve clinical decision making and outcomes.
The first part of this narrative review discusses current research with an introduction to artificial intelligence in oncological hybrid imaging and key concepts in data science. The second part reviews relevant examples with a focus on applications in oncology as well as discussion of challenges and current limitations.
AI applications have the potential to leverage the diagnostic data stream with high efficiency and depth to facilitate automated lesion detection, characterization, and therapy monitoring to ultimately improve quality and efficiency throughout the medical imaging workflow. The goal is to generate reproducible, structured, quantitative diagnostic data for evidence-based therapy guidance in oncology. However, significant challenges remain regarding application development, benchmarking, and clinical implementation.
· Hybrid imaging generates a large amount of multimodality medical imaging data with high complexity and depth.. · Advanced tools are required to enable fast and cost-efficient processing along the whole radiology value chain.. · AI applications promise to facilitate the assessment of oncological disease in hybrid imaging with high quality and efficiency for lesion detection, characterization, and response assessment. The goal is to generate reproducible, structured, quantitative diagnostic data for evidence-based oncological therapy guidance.. · Selected applications in three oncological entities (lung, prostate, and neuroendocrine tumors) demonstrate how AI algorithms may impact imaging-based tasks in hybrid imaging and potentially guide clinical decision making..
人工智能(AI)应用在医学影像的广泛领域变得越来越重要。由于肿瘤混合成像产生了大量的成像数据,因此 AI 应用程序在原发性分期、治疗监测和复发检测中的病灶检测和特征描述方面是理想的。鉴于机器学习(ML)和深度学习(DL)方法的快速发展,AI 的作用将对成像工作流程产生重大影响,并最终改善临床决策和结果。
本叙述性综述的第一部分讨论了当前的研究,介绍了肿瘤混合成像中的人工智能和数据科学中的关键概念。第二部分回顾了相关示例,重点介绍了肿瘤学中的应用,以及对挑战和当前局限性的讨论。
AI 应用程序有可能以高效率和深度利用诊断数据流,以促进自动病灶检测、特征描述和治疗监测,最终提高整个医学成像工作流程的质量和效率。目标是为肿瘤学中的循证治疗指导生成可重复、结构化、定量的诊断数据。然而,在应用程序开发、基准测试和临床实施方面仍然存在重大挑战。
· 混合成像生成了具有高度复杂性和深度的大量多模态医学成像数据。
· 需要先进的工具来实现整个放射学价值链的快速和具有成本效益的处理。
· AI 应用程序有望以高质量和高效率促进混合成像中肿瘤疾病的评估,实现病灶检测、特征描述和反应评估。目标是为肿瘤学的循证治疗指导生成可重复、结构化、定量的诊断数据。
· 三个肿瘤实体(肺、前列腺和神经内分泌肿瘤)的选定应用示例展示了 AI 算法如何影响混合成像中的成像任务,并有可能指导临床决策。