Suppr超能文献

基于图神经网络的螺杆泵选型过程中的干扰推荐

Interference recommendation for the pump sizing process in progressive cavity pumps using graph neural networks.

作者信息

Starke Leandro, Hoppe Aurélio Faustino, Sartori Andreza, Stefenon Stefano Frizzo, Santana Juan Francisco De Paz, Leithardt Valderi Reis Quietinho

机构信息

Department of Information Systems and Computing, Regional University of Blumenau, Rua Antônio da Veiga 140, 89030-903, Blumenau, SC, Brazil.

Electrical Engineering Graduate Program, Regional University of Blumenau, Rua São Paulo 3250, 89030-000, Blumenau, SC, Brazil.

出版信息

Sci Rep. 2023 Oct 6;13(1):16884. doi: 10.1038/s41598-023-43972-4.

Abstract

Pump sizing is the process of dimensional matching of an impeller and stator to provide a satisfactory performance test result and good service life during the operation of progressive cavity pumps. In this process, historical data analysis and dimensional monitoring are done manually, consuming a large number of man-hours and requiring a deep knowledge of progressive cavity pump behavior. This paper proposes the use of graph neural networks in the construction of a prototype to recommend interference during the pump sizing process in a progressive cavity pump. For this, data from different applications is used in addition to individual control spreadsheets to build the database used in the prototype. From the pre-processed data, complex network techniques and the betweenness centrality metric are used to calculate the degree of importance of each order confirmation, as well as to calculate the dimensionality of the rotors. Using the proposed method a mean squared error of 0.28 is obtained for the cases where there are recommendations for order confirmations. Based on the results achieved, it is noticeable that there is a similarity of the dimensions defined by the project engineers during the pump sizing process, and this outcome can be used to validate the new design definitions.

摘要

泵的尺寸确定是一个使叶轮和定子在尺寸上相匹配的过程,目的是在螺杆泵运行期间获得令人满意的性能测试结果和较长的使用寿命。在此过程中,历史数据分析和尺寸监测都是手动完成的,这耗费了大量人工,并且需要对螺杆泵的运行特性有深入了解。本文提出在构建一个原型时使用图神经网络,以在螺杆泵的泵尺寸确定过程中推荐干涉情况。为此,除了单独的控制电子表格外,还使用来自不同应用的数据来构建原型中使用的数据库。从预处理后的数据中,运用复杂网络技术和介数中心性度量来计算每个订单确认的重要程度,以及计算转子的尺寸。对于有订单确认推荐的情况,使用所提出的方法得到的均方误差为0.28。基于所取得的结果,可以注意到在泵尺寸确定过程中项目工程师定义的尺寸存在相似性,并且这一结果可用于验证新的设计定义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d83c/10558576/addf5e11a64e/41598_2023_43972_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验