School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.
Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA, 6152, Australia.
Heredity (Edinb). 2023 Dec;131(5-6):374-386. doi: 10.1038/s41437-023-00653-2. Epub 2023 Oct 8.
Using genetic information to develop and implement conservation programs is vital for maintaining biodiversity and ecosystem resilience. Evaluation of the genetic variability within and among remnant populations can inform management of both natural and translocated populations to maximise species' adaptive potential, mitigate negative impacts of inbreeding, and subsequently minimise risk of extinction. Here we use reduced representation sequencing to undertake a genetic assessment of the golden bandicoot (Isoodon auratus), a threatened marsupial endemic to Australia. The currently recognised taxon consists of three subspecies distributed among multiple natural and translocated populations. After confirming the genetic distinctiveness of I. auratus from two closely related taxa, I. fusciventer and I. macrourus, we identified four genetic clusters within I. auratus. These clusters exhibited substantial genetic differentiation (pairwise F values ranging from 0.18 to 0.65, pairwise D ranging from 0.1 to 0.168), reflecting long-term isolation of some populations on offshore islands and the influence of genetic drift. Mainland natural populations in the Kimberley region had the highest genetic diversity and the largest contribution to overall allelic and gene diversity compared to both natural and translocated island populations. A population translocated to Guluwuru Island in the Northern Territory had the lowest genetic diversity. Our data suggest that island populations can appear genetically unique due to genetic drift and this needs to be taken into account when considering genetic diversity in conservation efforts to maintain overall genetic diversity of the species. We effectively demonstrate how genomic information can guide practical conservation planning, especially when declining species are represented by multiple isolated populations.
利用遗传信息来制定和实施保护计划对于维护生物多样性和生态系统的恢复力至关重要。评估残余种群内和种群间的遗传变异性可以为自然种群和移植种群的管理提供信息,以最大限度地提高物种的适应潜力,减轻近交的负面影响,从而最大限度地降低灭绝的风险。在这里,我们使用简化基因组测序来对金袋狸(Isoodon auratus)进行遗传评估,金袋狸是澳大利亚特有的一种有袋类动物,受到威胁。目前公认的分类群由分布在多个自然和移植种群中的三个亚种组成。在确认金袋狸与两个密切相关的分类群——赤袋狸(I. fusciventer)和大袋狸(I. macrourus)具有遗传独特性之后,我们在金袋狸中鉴定出了四个遗传群。这些群体现出了显著的遗传分化(成对 F 值范围从 0.18 到 0.65,成对 D 值范围从 0.1 到 0.168),反映了一些种群在近海岛屿上的长期隔离和遗传漂变的影响。与自然和移植岛屿种群相比,金伯利地区的大陆自然种群具有最高的遗传多样性和对总体等位基因和基因多样性的最大贡献。移植到北领地古鲁武鲁岛的一个种群的遗传多样性最低。我们的数据表明,由于遗传漂变,岛屿种群可能在遗传上显得独特,在考虑保护工作中的遗传多样性以维持物种的整体遗传多样性时,这需要加以考虑。我们有效地展示了基因组信息如何指导实际的保护规划,特别是当衰退物种由多个隔离种群代表时。