Suppr超能文献

利用人口与健康调查对撒哈拉以南非洲城市疟疾风险进行空间优化的方法

Spatial Optimization Methods for Malaria Risk Mapping in Sub-Saharan African Cities Using Demographic and Health Surveys.

作者信息

Morlighem Camille, Chaiban Celia, Georganos Stefanos, Brousse Oscar, van Lipzig Nicole P M, Wolff Eléonore, Dujardin Sébastien, Linard Catherine

机构信息

Department of Geography University of Namur Namur Belgium.

ILEE University of Namur Namur Belgium.

出版信息

Geohealth. 2023 Oct 6;7(10):e2023GH000787. doi: 10.1029/2023GH000787. eCollection 2023 Oct.

Abstract

Vector-borne diseases, such as malaria, are affected by the rapid urban growth and climate change in sub-Saharan Africa (SSA). In this context, intra-urban malaria risk maps act as a key decision-making tool for targeting malaria control interventions, especially in resource-limited settings. The Demographic and Health Surveys (DHS) provide a consistent malaria data source for mapping malaria risk at the national scale, but their use is limited at the intra-urban scale because survey cluster coordinates are randomly displaced for ethical reasons. In this research, we focus on predicting intra-urban malaria risk in SSA cities-Dakar, Dar es Salaam, Kampala and Ouagadougou-and investigate the use of spatial optimization methods to overcome the effect of DHS spatial displacement. We modeled malaria risk using a random forest regressor and remotely sensed covariates depicting the urban climate, the land cover and the land use, and we tested several spatial optimization approaches. The use of spatial optimization mitigated the effects of DHS spatial displacement on predictive performance. However, this comes at a higher computational cost, and the percentage of variance explained in our models remained low (around 30%-40%), which suggests that these methods cannot entirely overcome the limited quality of epidemiological data. Building on our results, we highlight potential adaptations to the DHS sampling strategy that would make them more reliable for predicting malaria risk at the intra-urban scale.

摘要

诸如疟疾等媒介传播疾病受到撒哈拉以南非洲(SSA)地区城市快速增长和气候变化的影响。在此背景下,城市内疟疾风险地图成为了确定疟疾控制干预措施的关键决策工具,尤其是在资源有限的环境中。人口与健康调查(DHS)为在国家层面绘制疟疾风险提供了一致的疟疾数据源,但由于出于伦理原因调查聚类坐标被随机移位,其在城市内部尺度上的应用受到限制。在本研究中,我们专注于预测SSA地区城市——达喀尔、达累斯萨拉姆、坎帕拉和瓦加杜古——的城市内疟疾风险,并研究使用空间优化方法来克服DHS空间移位的影响。我们使用随机森林回归器和描绘城市气候、土地覆盖和土地利用的遥感协变量对疟疾风险进行建模,并测试了几种空间优化方法。空间优化的使用减轻了DHS空间移位对预测性能的影响。然而,这带来了更高的计算成本,并且我们模型中解释的方差百分比仍然较低(约30%-40%),这表明这些方法无法完全克服流行病学数据质量有限的问题。基于我们的研究结果,我们强调了对DHS抽样策略的潜在调整,这将使其在预测城市内尺度的疟疾风险时更加可靠。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e80/10558065/a61aac28a7ce/GH2-7-e2023GH000787-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验