St. George's University Hospital, London, United Kingdom.
The Alan Turing Institute, London, United Kingdom; Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
Arthroscopy. 2024 Apr;40(4):1153-1163.e2. doi: 10.1016/j.arthro.2023.09.023. Epub 2023 Oct 8.
To determine whether machine learning (ML) techniques developed using registry data could predict which patients will achieve minimum clinically important difference (MCID) on the International Hip Outcome Tool 12 (iHOT-12) patient-reported outcome measures (PROMs) after arthroscopic management of femoroacetabular impingement syndrome (FAIS). And secondly to determine which preoperative factors contribute to the predictive power of these models.
A retrospective cohort of patients was selected from the UK's Non-Arthroplasty Hip Registry. Inclusion criteria were a diagnosis of FAIS, management via an arthroscopic procedure, and a minimum follow-up of 6 months after index surgery from August 2012 to June 2021. Exclusion criteria were for non-arthroscopic procedures and patients without FAIS. ML models were developed to predict MCID attainment. Model performance was assessed using the area under the receiver operating characteristic curve (AUROC).
In total, 1,917 patients were included. The random forest, logistic regression, neural network, support vector machine, and gradient boosting models had AUROC 0.75 (0.68-0.81), 0.69 (0.63-0.76), 0.69 (0.63-0.76), 0.70 (0.64-0.77), and 0.70 (0.64-0.77), respectively. Demographic factors and disease features did not confer a high predictive performance. Baseline PROM scores alone provided comparable predictive performance to the whole dataset models. Both EuroQoL 5-Dimension 5-Level and iHOT-12 baseline scores and iHOT-12 baseline scores alone provided AUROC of 0.74 (0.68-0.80) and 0.72 (0.65-0.78), respectively, with random forest models.
ML models were able to predict with fair accuracy attainment of MCID on the iHOT-12 at 6-month postoperative assessment. The most successful models used all patient variables, all baseline PROMs, and baseline iHOT-12 responses. These models are not sufficiently accurate to warrant routine use in the clinic currently.
Level III, retrospective cohort design; prognostic study.
确定使用注册表数据开发的机器学习 (ML) 技术是否可以预测哪些患者在接受髋关节撞击综合征 (FAIS) 的关节镜治疗后,在国际髋关节结果工具 12 (iHOT-12) 患者报告结果测量 (PROM) 中会达到最小临床重要差异 (MCID)。其次,确定哪些术前因素有助于这些模型的预测能力。
从英国非关节置换髋关节登记处中选择了回顾性队列患者。纳入标准为 FAIS 的诊断、关节镜手术治疗以及 2012 年 8 月至 2021 年 6 月索引手术后至少 6 个月的随访。排除标准为非关节镜手术和无 FAIS 的患者。开发了 ML 模型来预测 MCID 达标。使用接收者操作特征曲线下面积 (AUROC) 评估模型性能。
共有 1917 名患者入选。随机森林、逻辑回归、神经网络、支持向量机和梯度提升模型的 AUROC 分别为 0.75(0.68-0.81)、0.69(0.63-0.76)、0.69(0.63-0.76)、0.70(0.64-0.77)和 0.70(0.64-0.77)。人口统计学因素和疾病特征并未提供高预测性能。基线 PROM 评分本身提供了与整个数据集模型相当的预测性能。EuroQoL 5 维度 5 级和 iHOT-12 基线评分以及仅 iHOT-12 基线评分的 AUROC 分别为 0.74(0.68-0.80)和 0.72(0.65-0.78),随机森林模型。
ML 模型能够以相当准确的精度预测 6 个月术后 iHOT-12 达到 MCID。最成功的模型使用了所有患者变量、所有基线 PROM 和基线 iHOT-12 反应。这些模型目前还不够准确,不能在临床上常规使用。
三级,回顾性队列设计;预后研究。